Identifying New Therapeutics and Molecular Mechanisms in Congenital Disorders of Glycosylation.
确定先天性糖基化疾病的新疗法和分子机制。
基本信息
- 批准号:10644811
- 负责人:
- 金额:$ 11.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectApoptosisBiologicalBiological AssayCandidate Disease GeneCell Culture TechniquesCell LineCell ProliferationCell modelCellsCellular Metabolic ProcessCessation of lifeClinical TrialsCongenital disorders of glycosylationDefectDevelopmentDevelopmental Delay DisordersDiseaseDisease modelDown-RegulationDrosophila genusDrug ScreeningEnsureEnzymesEpilepsyEyeFacultyFutureGene ExpressionGenesGeneticGlycobiologyGoalsHealthHumanHuman Cell LineIn VitroInborn Errors of MetabolismIndividualInstitutionInterventionLearningLinkMass Spectrum AnalysisMentorsMentorshipMetabolismMicroscopyModelingMolecularMolecular BiologyMutationOrganismPathway interactionsPatientsPharmaceutical PreparationsPre-Clinical ModelProcessProliferatingProteinsRNA InterferenceRare DiseasesResearchSeizuresStressTechniquesTestingTherapeuticTherapeutic UsesTrainingTranslatingUniversitiesUtahWorkWritingYeastscareercommon symptomdevelopmental diseasedisease phenotypedrug repurposingdrug use screeningendoplasmic reticulum stressflygenetic manipulationglycosylationimprovedin vivoin vivo Modelloss of functionloss of function mutationmembermetabolomicsnew therapeutic targetnovel therapeuticspatient populationprotein expressionreduce symptomssmall moleculesmall molecule librariessugartherapeutic evaluationtool
项目摘要
Glycosylation is an essential biological pathway that involves the post- or co-translational addition of sugar
moieties to proteins. Congenital Disorders of Glycosylation (CDGs) are rare developmental disorders caused by
inborn errors of metabolism in glycosylation pathways. CDGs lack good treatment options, and this is typically
due to poorly understood mechanisms and difficulty in establishing clinical trials in small patient populations. My
long-term objectives are to determine mechanisms of CDGs and identify new therapeutics for CDG patients.
One example is DPAGT1-CDG - a CDG caused by mutations in the gene DPAGT1 which encodes for the first
enzyme used in N-linked glycosylation. Recently, I identified many modifier genes which can be perturbed to
rescue a model of DPAGT1-CDG, but their mechanisms are not yet known. In Aim 1, I propose to determine the
mechanisms of these modifier genes using human cell culture in order to characterize new therapeutic targets
for this disorder. I will use a DPAGT1-CDG cell model to determine how these rescuing modifier genes affect
patient-related health metrics of proliferation, stress, and their glycoproteome. In Aim 2, to identify new drugs
that can rescue this disorder, I will use an in vivo Drosophila DPAGT1-CDG model to perform a repurposed drug
screen using 1,500+ small molecules (98% FDA/EMA-approved). Using an in vivo model will ensure these drugs
are safe during development, and this repurposed drug screen will help expedite the clinical trial process for new
CDG therapies. In Aim 3, I will characterize a new finding that suggests that genes underlying CDGs ("CDG
genes") themselves represent an enriched set of modifier genes for treating CDGs. Perturbation of CDGs can
rescue models of DPAGT1-CDG, as well as a model of the most common CDG, PMM2-CDG. I will use RNA
interference to perturb all 150+ CDG genes to identify any that are capable of rescuing both DPAGT1- and
PMM2-CDG human cell models (with the same health metrics as in Aim 1). The discovery of new CDG gene
modifier genes capable of rescuing these models could have the potential to translate into future therapies for
many other CDGs. Finally, in Aim 4, I will synthesize the above Aims to test therapeutic drugs from Aim 2 in
human cell culture models and CDG modifier genes from Aim 3 in Drosophila models. I will use high-throughput
tools in cell culture and in vivo stress markers in Drosophila to determine the mechanisms of these new therapies.
This multi-species approach will ensure a better transition from preclinical models into therapies for patients. In
addition to the above, completion of this proposal will provide me with training to complete my career goals. I will
learn new techniques in cell culture and small molecule screens while also taking formal courses in mentorship
and writing. I have an outstanding mentor, co-mentor, and advisory committee consisting of faculty with expertise
in CDGs, cell culture, drug screening, genetics, and molecular biology. I also have state-of-the-art facilities and
staff at the University of Utah available to me. With my plan, committed faculty members, and excellent institution,
completing this proposal will help me successfully transition to an independent research career.
糖基化是一种重要的生物学途径,涉及糖的翻译后或共翻译添加
部分与蛋白质结合。先天性糖基化障碍(CDG)是一种罕见的发育障碍,
糖基化途径中的先天性代谢缺陷。CDG缺乏良好的治疗选择,这是典型的
这是由于对机制知之甚少以及难以在小患者群体中建立临床试验。我
长期目标是确定CDG的机制并鉴定用于CDG患者的新疗法。
一个实例是DPAGT 1-CDG -由编码第一个CDG的基因DPAGT 1中的突变引起的CDG。
用于N-连接糖基化的酶。最近,我发现了许多修饰基因,它们可以被干扰,
拯救DPAGT 1-CDG模型,但其机制尚不清楚。在目标1中,我建议确定
这些修饰基因的机制,使用人类细胞培养,以表征新的治疗靶点
治疗这种疾病我将使用DPAGT 1-CDG细胞模型来确定这些拯救修饰基因如何影响
患者相关的增殖、压力和糖蛋白质组的健康指标。目标2:确定新药
为了拯救这种疾病,我将使用体内果蝇DPAGT 1-CDG模型来进行重新利用药物
使用1,500多种小分子进行筛选(98%获得FDA/EMA批准)。使用体内模型将确保这些药物
在开发过程中是安全的,这种重新设计的药物筛选将有助于加快新的临床试验过程。
CDG疗法。在目标3中,我将描述一个新的发现,该发现表明CDG(“CDG
基因)本身代表了用于治疗CDG的修饰基因的富集组。CDG的扰动可以
DPAGT 1-CDG的拯救模型,以及最常见的CDG模型PMM 2-CDG。我会用RNA
干扰干扰所有150+ CDG基因以鉴定任何能够拯救DPAGT 1-和
PMM 2-CDG人细胞模型(具有与目标1中相同的健康指标)。CDG新基因的发现
能够拯救这些模型的修饰基因可能有潜力转化为未来的治疗方法,
许多其他CDG。最后,在目标4中,我将综合上述目标,以测试目标2中的治疗药物。
人细胞培养模型和果蝇模型中来自Aim 3的CDG修饰基因。我将使用高通量
细胞培养和果蝇体内应激标记的工具,以确定这些新疗法的机制。
这种多物种方法将确保从临床前模型更好地过渡到患者治疗。在
除此之外,完成这份建议书将为我提供培训,以完成我的职业目标。我会
学习细胞培养和小分子筛选的新技术,同时还参加正式的导师课程
和写作我有一个杰出的导师,共同导师,和咨询委员会组成的教师与专业知识
CDG、细胞培养、药物筛选、遗传学和分子生物学。我还有最先进的设备
犹他州大学的教职员工。有了我的计划,忠诚的教职员工和优秀的机构,
完成这份建议书将帮助我成功地过渡到一个独立的研究生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Martin Dalton其他文献
Hans Martin Dalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Martin Dalton', 18)}}的其他基金
Characterization and Contextualization of Modifier Genes Affecting ER Stress
影响内质网应激的修饰基因的特征和背景
- 批准号:
10312806 - 财政年份:2020
- 资助金额:
$ 11.61万 - 项目类别:
Characterization and Contextualization of Modifier Genes Affecting ER Stress
影响内质网应激的修饰基因的特征和背景
- 批准号:
9910079 - 财政年份:2020
- 资助金额:
$ 11.61万 - 项目类别:
Characterization of Conserved Protein Synthesis Aging Pathways
保守蛋白质合成老化途径的表征
- 批准号:
9192920 - 财政年份:2016
- 资助金额:
$ 11.61万 - 项目类别:
相似国自然基金
GLRA2功能缺失影响视网膜发育导致高度近视的机制研究
- 批准号:2025JJ80300
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
孕期重金属混合暴露对胎儿生长受限的影响及MCL-1降解介导的胎盘凋亡在其中的调控作用研究
- 批准号:2025JJ60756
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CPNE3通过调控DLD、DLAT蛋白及铜死亡机制影响NSCLC细胞增殖与凋亡的研究
- 批准号:2025JJ70230
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
RNA 结合蛋白ZCCHC24对子宫颈癌细胞增殖、凋亡与自噬的影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
可视化纳米微球示踪动态评价VEGF介导PI3K/AKT通路调控附睾上皮细胞“自噬-凋亡”交联途径影响
- 批准号:2025JJ80383
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rab43介导的Nkain4+雪旺细胞线粒体稳态失衡触发泛凋亡影响周围神经再生的机制及应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新NAD+合成途径对肝再生的影响和机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
TRAF6通过乳酸化修饰调控ILF3相分离影响结直肠癌细胞泛凋亡的机制研究
- 批准号:2024Y9208
- 批准年份:2024
- 资助金额:70.0 万元
- 项目类别:省市级项目
细胞坏死性凋亡对新城疫活疫苗安全性的影响及机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
NCOA4介导的铁自噬对牙周炎中牙龈卟啉单胞菌刺激单核细胞发生坏死性凋亡的影响
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 11.61万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Studentship