Identification and Imaging of Skeletal Muscle Response to Graded Nerve Crush

骨骼肌对分级神经挤压反应的识别和成像

基本信息

  • 批准号:
    10646172
  • 负责人:
  • 金额:
    $ 15.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary Atrophy and fibrosis of skeletal muscle after neuromuscular trauma is a significant impediment to the restoration of function after severe neuromuscular trauma. Despite this, dynamic assessment tools for muscle wasting and dysfunction are limited, leaving a critical gap in the orthopedic surgeon’s ability to assess the degree of neurogenic muscle injury and its ultimate prognosis. This gap stems in part from an incomplete understanding of the role of increased expression of transcriptional factors and proteases related to atrophy, and inability to dynamically assess them clinically. Calpain is one of these proteases central to the myofibril destruction of neurogenic atrophy, and therefore has potential to serve as a marker of muscle atrophy. However, translation of this relationship into a diagnostic tool is limited by a lack of techniques for real time assessment of calpain activity. The proposed work seeks to explore the potential for use of optical probes to identify muscle atrophy by examining the relationship between nerve injury and muscle contractility and calpain activity. Aim 1a will determine if calpain expression and activity will increase proportionally with nerve injury and muscle dysfunction. Equal numbers of male and female mice will be subjected to a varying degree of unilateral sciatic nerve crush injury. At a subsequent surgery, at staged intervals, functional recovery will be assessed with walking track analysis and grip strength testing. Hindlimb muscles will undergo ex-vivo contractility testing, as well as histomorphometric analysis and relevant transcriptional factors will be assayed. Calpain activity will be quantified with ELISA kits and with use of a pre-clinical imaging system to detect near-infrared fluorescence (NIR) within the hindlimb muscles after administration of an injectable calpain sensitive probe. In Aim 1b, a unilateral sciatic nerve transection and repair will be performed in the mice, and the same series of functional tests, transcriptional assays and NIR imaging with the optical probe will be undertaken. Similarly, Aim 1c will utilize the same methodologic assessments, at the same time intervals, after removal of a segment of sciatic nerve. The increasing degree of nerve injuries and proposed assessments will help to delineate the canonical pathways of muscle atrophy after nerve injury, and the proposed optical probe will provide a powerful new diagnostic tool. As an orthopedic surgeon with a practice devoted to the care of mangled limbs, I understand the clinical impact of such injuries, but need protected time and resources to develop the skills to study these at a molecular level. In addition to the investigations described above, I will participate in graduate coursework to improve my understanding of molecular biology, as well as optical and biological imaging. I will regularly participate in scholarly activities such as journal clubs and grant seminars through the Musculoskeletal Research Center to enhance my grant writing abilities and improve my understanding of experimental methodologies. In addition to my primary and secondary mentor, I have assembled a mentoring committee to give feedback on results and assist with experimental design. This constellation of planned activities, along with the proposed research methods above will provide me the requisite training and experience to develop as a clinician scientist with an interest in optical imaging of skeletal muscle atrophy.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Micah Brogan其他文献

David Micah Brogan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Micah Brogan', 18)}}的其他基金

Identification and Imaging of Skeletal Muscle Response to Graded Nerve Crush
骨骼肌对分级神经挤压反应的识别和成像
  • 批准号:
    10351778
  • 财政年份:
    2022
  • 资助金额:
    $ 15.45万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了