Genetic and social network analysis to target interventions for malaria elimination
遗传和社会网络分析以制定消除疟疾的干预措施
基本信息
- 批准号:10646229
- 负责人:
- 金额:$ 14.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-22 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAgricultural WorkersBiometryCaliforniaCharacteristicsCommunicable DiseasesCommunitiesCountryCross-Sectional StudiesCulicidaeDataDisease ClusteringsEpidemiologic MethodsEpidemiologyEvaluationExposure toFarmFoundationsFundingGeneticGenotypeGeographyGoalsHealthHealth Service AreaHealth Services AccessibilityHeterogeneityHumanIncomeIndividualInfectionInfluentialsInterventionKnowledgeMalariaMalaria preventionMeasuresMentored Research Scientist Development AwardMentorsMentorshipMigrantModelingNamibiaNetwork-basedParasitesPathway AnalysisPatternPersonsPlayPopulationPositioning AttributePrevention MeasuresRecommendationResearchResearch PersonnelResolutionRiskRoleSan FranciscoSeasonsSocial NetworkStigmatizationSurveysTestingTimeTrainingTravelUniversitiesVariantWorld Health Organizationanalytical methodcareercareer developmentcostdesignepidemiologic datagenetic analysisgenetic approachgenetic epidemiologyhigh riskhigh risk populationimprovedinfection riskinfectious disease modelintervention deliverymalaria transmissionmathematical modelnovelpeerpopulation basedpreventprofessorresponsescale upskillssocialsocial influencespatiotemporaltheoriestransmission processuptake
项目摘要
PROJECT SUMMARY/ABSTRACT
This proposed K01 award will support the career development of Dr. Jennifer Smith, an Assistant Adjunct
Professor in the Department of Epidemiology and Biostatistics at the University of California, San Francisco
(UCSF). Dr. Smith's career goal is to become an independent researcher with combined expertise in parasite
genotyping and human network analyses to optimize interventions for infectious disease elimination. To
support her career development, this application proposes a study that leverages data collected as part of
ongoing research in malaria high-risk populations and uses novel genetic and social network analyses to
address an urgent challenge preventing achievement of malaria elimination targets. As malaria transmission
declines, an increasingly large proportion of the parasite reservoir is clustered in specific sub-populations with
high exposure to infection and who often face significant barriers to accessing and utilizing malaria
interventions. While normative bodies like the World Health Organization recommend a targeted response in
known malaria high-risk populations, there is limited evidence on the extent to which these populations drive
transmission, the impact of targeted interventions or how to optimize coverage. Through cross-sectional and
temporal analysis of genetic and social network data collected as part of an existing, separately funded
population-based evaluation of targeted malaria interventions in high-risk populations, this K01 proposes to
investigate genetic connectivity between infections in migrant and resident populations and the role social
networks play in uptake of malaria interventions. The specific aims are to (1) quantify parasite genetic
connectivity and transmission potential within and between migrant and resident populations at different time
points and spatial scales, (2) evaluate the influence of social network attributes on uptake of malaria prevention
measures, and (3) model transmission networks and estimate the impact of alternative intervention strategies
in migrant and resident agricultural workers. This study will provide crucial knowledge on how malaria high-risk
populations contribute to transmission dynamics, inform how social networks can be leveraged to improve
intervention uptake, and quantify the impact of targeted interventions on overall transmission. The proposed
research will build on Dr. Smith's foundation in epidemiologic methods and include a 5-year training plan
including mentorship from leaders in genetic and malaria epidemiology, social network analysis and
mathematical modelling at UCSF, University of Southern California and UC Berkeley. Dr. Smith's training goals
are to (1) gain knowledge in malaria genetic epidemiology and applied analytic approaches for genetic data, (2)
develop expertise in advanced social network theory and analytic methods, and (3) obtain training in
mathematical modelling. The findings will be used as a foundation for an R01 to implement and evaluate
network-based interventions among malaria high-risk populations in northern Namibia.
项目总结/摘要
这个提议的K 01奖项将支持助理助理教授Jennifer Smith博士的职业发展
加州大学旧金山弗朗西斯科流行病学和生物统计学系教授
(UCSF)。史密斯博士的职业目标是成为一名独立的研究人员,
基因分型和人际网络分析,以优化消除传染病的干预措施。到
为了支持她的职业发展,本申请提出了一项研究,利用收集的数据作为
正在疟疾高危人群中进行的研究,并使用新的遗传和社会网络分析,
应对阻碍实现消除疟疾目标的紧迫挑战。作为疟疾的传播
下降,越来越大比例的寄生虫水库聚集在特定的亚群,
感染风险高,在获得和利用疟疾方面往往面临重大障碍
干预措施。虽然世界卫生组织等规范性机构建议采取有针对性的应对措施,
已知的疟疾高危人群中,有有限的证据表明,在多大程度上,这些人群驱动
传播、有针对性的干预措施的影响或如何优化覆盖面。通过横截面和
对作为现有的单独资助的
对高危人群中有针对性的疟疾干预措施进行基于人群的评价,本K 01建议
调查移民和常住人口感染之间的遗传联系以及社会作用
网络在采取疟疾干预措施方面发挥作用。具体目的是(1)定量寄生虫遗传
不同时间流动人口和常住人口内部和之间的连通性和传播潜力
点和空间尺度,(2)评估社会网络属性对疟疾预防的影响
措施,以及(3)模型传输网络和估计替代干预策略的影响
农民工和农民工。这项研究将提供关于疟疾高危人群
人口有助于传播动态,告知如何利用社交网络来改善
采取干预措施,并量化有针对性的干预措施对总体传播的影响。拟议
这项研究将建立在史密斯博士的流行病学方法基础上,并包括一个为期5年的培训计划
包括遗传学和疟疾流行病学、社会网络分析和
数学建模在加州大学旧金山分校,南加州大学和加州大学伯克利分校。史密斯博士的训练目标
是(1)获得疟疾遗传流行病学知识和遗传数据的应用分析方法,(2)
发展先进的社会网络理论和分析方法的专业知识,以及(3)获得以下方面的培训
数学建模研究结果将作为R 01实施和评估的基础
在纳米比亚北方疟疾高危人群中采取基于网络的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Linnea Smith其他文献
Jennifer Linnea Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Linnea Smith', 18)}}的其他基金
Genetic and social network analysis to target interventions for malaria elimination
遗传和社会网络分析以制定消除疟疾的干预措施
- 批准号:
10038456 - 财政年份:2020
- 资助金额:
$ 14.49万 - 项目类别:
Genetic and social network analysis to target interventions for malaria elimination
遗传和社会网络分析以制定消除疟疾的干预措施
- 批准号:
10434847 - 财政年份:2020
- 资助金额:
$ 14.49万 - 项目类别:
Genetic and social network analysis to target interventions for malaria elimination
遗传和社会网络分析以制定消除疟疾的干预措施
- 批准号:
10221517 - 财政年份:2020
- 资助金额:
$ 14.49万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 14.49万 - 项目类别:
Research Grant














{{item.name}}会员




