Non-Invasive Single-Cell Morphometry and Tracking in Living Bacterial Biofilms
活细菌生物膜的非侵入性单细胞形态测定和追踪
基本信息
- 批准号:10653010
- 负责人:
- 金额:$ 30.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-25 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAntibioticsArchitectureBacteriaBacterial InfectionsBehaviorBiochemicalBiologicalBiologyCalibrationCell ShapeCellsCessation of lifeChemicalsCommunitiesComputer ModelsComputer softwareCrowdingDevelopmentDisinfectionEnvironmentEpidemicEscherichia coliEukaryotic CellExhibitsGene ActivationGene ExpressionGenetic TranscriptionGeometryGrowthHealthHospitalsHumanHuman MicrobiomeImageImmersionImmune systemIndividualIndustrializationKnowledgeLife StyleLightLinear ProgrammingMachine LearningMathematicsMeasurementMeasuresMicrobial BiofilmsMicroscopeMicroscopyMyxococcus xanthusNosocomial InfectionsOpticsPathogenicityPhenotypePhysiologyPopulationPositioning AttributePropertyReadingReporterReporter GenesResearchResearch PersonnelResolutionShapesShigella flexneriSocial BehaviorSpecimenSumSurfaceSystemTechniquesTechnologyTestingThickTimeTissuesUnited StatesValidationWaterantibiotic tolerancebacterial communitybehavioral phenotypingcell behaviorcell dimensioncell typecellular imagingcopingenvironmental stressorfluorescence imaginggene regulatory networkhigh resolution imaginghuman pathogenimage processingimaging modalityimaging platformlenslive cell imagingmechanical signalmetermicrobialmicrobial communitymodel designmorphometrynew technologypathogenic bacteriapreventpublic health relevancesealsocialstressorsupervised learningtemporal measurement
项目摘要
Project Summary/Abstract
Biofilms are cohesive, multicellular microbial communities that are able to adhere to biotic or abiotic surfaces.
The human microbiome contains numerous biofilm-forming bacterial species that help maintain normal human
physiology. On the other hand, more than half of the 1.7 million hospital-acquired infections in the US are caused
by biofilm-forming bacterial pathogens. The biofilm lifestyle is advantageous, because phenotypic diversity and
coordination of cellular behaviors within biofilms provide bacterial populations with emergent capabilities beyond
those of individual cells. For example, biofilms are orders of magnitude more tolerant towards physical, chemical,
and biological stressors, most notably long-term treatments with antibiotic drugs or clearance attempts by the
immune system. However, it remains largely unknown how such remarkable capabilities emerge from the
behaviors of individual cells and the interactions between them. A critical barrier to rapid progress is the inability
of conventional microscopes to resolve micrometer-sized bacterial cells in thick (>10 micrometers) biofilms in a
non-invasive manner. The proposed research addresses this challenge by developing integrated experimental
and computational technologies that enable non-invasive, 3D fluorescence imaging of pathogenic biofilms by
lattice-light sheet microscopy, accurate single-cell segmentation and 3D shape measurements based on the
acquired images, and simultaneous 3D tracking of thousands of cells inside biofilms. The ability to make single-
cell measurements in dense microbial populations will enable researchers to correlate the spatial trajectory of
each cell with that cells’ gene expression and behavioral phenotype. Such information will provide an integrated
understanding of how bacteria coordinate gene expression and social behaviors in 3D space and time. A
fundamental understanding of biofilm biology will help inform new strategies for harnessing the emergent
functional capabilities of microbial populations and for removing pathogenic biofilms from undesired
environments.
项目总结/摘要
生物膜是能够粘附于生物或非生物表面的粘性多细胞微生物群落。
人体微生物组包含许多生物膜形成细菌物种,有助于维持正常的人体健康。
physiology.另一方面,在美国170万医院获得性感染中,
由生物膜形成细菌病原体。生物膜生活方式是有利的,因为表型多样性和
生物膜内细胞行为的协调为细菌种群提供了超越
单个细胞。例如,生物膜对物理,化学,
和生物应激源,最明显的是抗生素药物的长期治疗或
免疫系统然而,在很大程度上仍然不清楚这种非凡的能力是如何从
单个细胞的行为以及它们之间的相互作用。快速发展的一个关键障碍是
传统的显微镜,以解决微米大小的细菌细胞在厚(>10微米)的生物膜中,
非侵入性方式。拟议的研究通过开发综合实验来应对这一挑战。
和计算技术,使非侵入性,3D荧光成像的病原生物膜,
点阵光片显微镜,精确的单细胞分割和基于
获取图像,并同时对生物膜内的数千个细胞进行3D跟踪。有能力让一个-
密集微生物种群中的细胞测量将使研究人员能够将微生物种群的空间轨迹与微生物种群的空间轨迹相关联。
每个细胞都有其基因表达和行为表型。这些信息将提供一个综合的
了解细菌如何在3D空间和时间中协调基因表达和社会行为。一
对生物膜生物学的基本理解将有助于为利用新出现的
微生物种群的功能能力和用于从不期望的微生物中去除病原性生物膜
环境.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Gahlmann其他文献
Andreas Gahlmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Gahlmann', 18)}}的其他基金
Non-Invasive Single-Cell Morphometry and Tracking in Living Bacterial Biofilms
活细菌生物膜的非侵入性单细胞形态测定和追踪
- 批准号:
10034367 - 财政年份:2020
- 资助金额:
$ 30.07万 - 项目类别:
Non-Invasive Single-Cell Morphometry and Tracking in Living Bacterial Biofilms
活细菌生物膜的非侵入性单细胞形态测定和追踪
- 批准号:
10439891 - 财政年份:2020
- 资助金额:
$ 30.07万 - 项目类别:
Non-Invasive Single-Cell Morphometry and Tracking in Living Bacterial Biofilms
活细菌生物膜的非侵入性单细胞形态测定和追踪
- 批准号:
10797053 - 财政年份:2020
- 资助金额:
$ 30.07万 - 项目类别:
Non-Invasive Single-Cell Morphometry and Tracking in Living Bacterial Biofilms
活细菌生物膜的非侵入性单细胞形态测定和追踪
- 批准号:
10247048 - 财政年份:2020
- 资助金额:
$ 30.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.07万 - 项目类别:
Research Grant