Using Machine Learning to Predict Clinical Deterioration in Hospitalized Children

使用机器学习预测住院儿童的临床恶化

基本信息

  • 批准号:
    10645029
  • 负责人:
  • 金额:
    $ 14.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Children who are admitted to the hospital and experience deterioration have a high risk of mortality and poor long-term health. Current warning early scores indicating risk of deterioration are subjectively derived and have not reduced in-hospital mortality. In recent work, I developed a vital sign based statistical model that demonstrated improved accuracy over current risk scores at predicting clinical deterioration in hospitalized children 24 hours in advance. Within adults, the combination of longitudinal data analysis techniques, machine learning, and electronic health record (EHR) data have led to highly accurate early warning scores. Therefore, my aim in this grant proposal is to utilize longitudinal integration of EHR data in a machine learning framework to develop a model for predicting clinical deterioration in hospitalized children as early as possible. I will do this by first deriving and validating a prediction model using structured EHR data collected from three pediatric hospitals (Aim 1). Using the same cohort, I will then build and validate a prediction model using features derived from unstructured clinical notes (Aim 2). I will also compare if the addition of unstructured features improves the prediction accuracy of the model derived in Aim 1. Finally, I will determine the association between non-patient level environmental variables within the hospital ecosystem and risk of clinical deterioration in hospitalized children (Aim 3). I will also determine if the addition of these environmental risk factors improves performance of the prediction model derived through Aims 1 and 2. Completion of this proposal will result in a validated pediatric risk prediction model that will enable clinicians to recognize early signs of deterioration in hospitalized children. This will facilitate timely intervention, thereby saving lives and improving long-term health. In addition, this grant will also provide me with crucial data for a future R01 trial aimed at assessing the impact of the prediction model in reducing mortality, decreasing costs, and improving long-term outcomes in hospitalized children. To establish myself as an independent investigator in pediatric prediction modeling, I propose a training plan that includes comprehensive didactics and mentorship in the areas of longitudinal data analysis, advanced machine learning, natural language processing, and concepts in pediatric care. I have assembled a first-class mentorship team comprised of national experts in longitudinal data analysis techniques and EHR-based machine learning (Robert Gibbons PhD and Matthew Churpek MD, PhD). My advisory team is comprised of experts in natural language processing (Dmitriy Dligach PhD), clinical decision support around deterioration events (Dana Edelson MD, MS and Priti Jani MD), and pediatric early warning scores (Christopher Parshuram MB., ChB., D. Phil., FRACP). By completing my research and career development goals, I will develop into an independent expert investigator in developing pediatric prediction models for ultimately improving outcomes in hospitalized children.
项目摘要 入院并经历恶化的儿童死亡风险高, 长期健康。目前表明恶化风险的预警早期评分是主观得出的, 而不是降低住院死亡率。在最近的工作中,我开发了一个基于生命体征的统计模型, 在预测住院患者临床恶化方面, 孩子们提前24小时在成年人中,纵向数据分析技术、机器 学习和电子健康记录(EHR)数据已经导致高度准确的预警分数。因此,我们认为, 我在这项拨款申请中的目标是在机器学习框架中利用EHR数据的纵向集成 建立一个尽早预测住院儿童临床恶化的模型。我既这样行 首先使用从三个儿科患者收集的结构化EHR数据推导和验证预测模型, 医院(目标1)。使用相同的队列,然后我将使用特征构建和验证预测模型 来源于非结构化临床记录(目标2)。我还将比较是否添加非结构化功能 提高了目标1中导出的模型的预测精度。最后,我将确定协会 医院生态系统内的非患者级环境变量与临床风险之间的关系 住院儿童病情恶化(目标3)。我还将确定这些环境风险的增加是否 这些因素提高了通过目标1和目标2得出的预测模型的性能。完成本 该提案将产生一个经过验证的儿科风险预测模型,使临床医生能够早期识别 住院儿童病情恶化的迹象。这将有助于及时干预,从而挽救生命, 改善长期健康。此外,这笔赠款还将为我提供未来R01试验的关键数据 旨在评估预测模型在降低死亡率、降低成本和改善 住院儿童的长期结局。使自己成为一名独立的儿科研究员 预测建模,我提出了一个培训计划,其中包括全面的教学和指导, 纵向数据分析、高级机器学习、自然语言处理和 儿科护理我组建了一个由全国纵向专家组成的一流导师团队, 数据分析技术和基于EHR的机器学习(Robert Gibbons PhD和Matthew Churpek MD, PhD)。我的顾问团队由自然语言处理(Dmitriy Dligach博士),临床 关于恶化事件的决策支持(Dana Edelson MD、MS和Priti Jani MD),以及儿科早期 警告分数(Christopher Parshuram MB.,ChB.,D.菲尔FRACP)。通过完成我的研究和事业 发展目标,我将发展成为一个独立的专家研究员,在发展儿科预测 最终改善住院儿童预后的模型。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine Learning and Clinical Informatics for Improving HIV Care Continuum Outcomes.
  • DOI:
    10.1007/s11904-021-00552-3
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ridgway JP;Lee A;Devlin S;Kerman J;Mayampurath A
  • 通讯作者:
    Mayampurath A
Prediction of Intracranial Hypertension and Brain Tissue Hypoxia Utilizing High-Resolution Data from the BOOST-II Clinical Trial.
  • DOI:
    10.1089/neur.2022.0055
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lazaridis, Christos;Ajith, Aswathy;Mansour, Ali;Okonkwo, David O.;Diaz-Arrastia, Ramon;Mayampurath, Anoop;BOOST II Investigators, B. O. O. S. T. I. I. Investigators
  • 通讯作者:
    BOOST II Investigators, B. O. O. S. T. I. I. Investigators
Multiple Organ Dysfunction Interactions in Critically Ill Children.
  • DOI:
    10.3389/fped.2022.874282
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Badke, Colleen M.;Mayampurath, Anoop;Sanchez-Pinto, L. Nelson
  • 通讯作者:
    Sanchez-Pinto, L. Nelson
Mortality and PICU Hospitalization Among Pediatric Gunshot Wound Victims in Chicago.
  • DOI:
    10.1097/cce.0000000000000626
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rhine MA;Hegermiller EM;Kane JM;Slidell MB;Mayampurath A;McQueen AA;Mbadiwe N;Pinto NP
  • 通讯作者:
    Pinto NP
PICU Survivorship: Factors Affecting Feasibility and Cohort Retention in a Long-Term Outcomes Study.
  • DOI:
    10.3390/children9071041
  • 发表时间:
    2022-07-13
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Sobotka, Sarah A.;Lynch, Emma J.;Dholakia, Ayesha, V;Mayampurath, Anoop;Pinto, Neethi P.
  • 通讯作者:
    Pinto, Neethi P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anoop Mayampurath其他文献

Anoop Mayampurath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anoop Mayampurath', 18)}}的其他基金

Clinical Phenotyping for Prediction of Retention in HIV Care
用于预测 HIV 护理保留的临床表型
  • 批准号:
    10762595
  • 财政年份:
    2023
  • 资助金额:
    $ 14.76万
  • 项目类别:
Using Machine Learning to Predict Clinical Deterioration in Hospitalized Children
使用机器学习预测住院儿童的临床恶化
  • 批准号:
    10171893
  • 财政年份:
    2019
  • 资助金额:
    $ 14.76万
  • 项目类别:
Using Machine Learning to Predict Clinical Deterioration in Hospitalized Children
使用机器学习预测住院儿童的临床恶化
  • 批准号:
    9805481
  • 财政年份:
    2019
  • 资助金额:
    $ 14.76万
  • 项目类别:
Using Machine Learning to Predict Clinical Deterioration in Hospitalized Children
使用机器学习预测住院儿童的临床恶化
  • 批准号:
    10455253
  • 财政年份:
    2019
  • 资助金额:
    $ 14.76万
  • 项目类别:
Using Machine Learning to Predict Clinical Deterioration in Hospitalized Children
使用机器学习预测住院儿童的临床恶化
  • 批准号:
    10413898
  • 财政年份:
    2019
  • 资助金额:
    $ 14.76万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了