Discovery, Biosynthesis and Engineering of Side-Chain-Macrocyclic Plant Peptides
侧链大环植物肽的发现、生物合成和工程化
基本信息
- 批准号:10653247
- 负责人:
- 金额:$ 33.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AlkaloidsAnabolismBiological AssayBiological AvailabilityC-terminalCellsCelosiaChemicalsChineseComplexCopperCyclic PeptidesDevelopmentEngineeringEnzymesFDA approvedFamilyGenesGeneticIn VitroLeadLibrariesMass Spectrum AnalysisMedicinal PlantsMedicineMiningModificationMolecularNatural Product DrugNatural ProductsOralOrganic SynthesisOrganismPathway interactionsPeptide LibraryPeptidesPeriodicityPharmaceutical PreparationsPharmacologic SubstancePlant ExtractsPlant GenesPlant GenomePlant SourcesPlantsProductionResearchRouteSourceSpecificityStructureTechnologyTertiary Protein StructureTestingTreesTryptophanTyrosineViralViral CancerZiziphusanaloganti-cancercancer therapydesigndrug developmentdrug discoverygenetic informationgenome resourceguided inquiryin vivomanufacturing facilitymetabolomicsmicrobialpeptide natural productsplant geneticsplant growth/developmentplant metabolitessynthetic biologytandem mass spectrometrytherapeutic evaluationtranscriptome
项目摘要
PROJECT SUMMARY
Plants have been an important source of medicinal natural products, as ~25% of FDA-approved drugs are
inspired by plant chemicals. However, discovery and development of new pharmaceuticals based on plant
natural products is challenging due to three main bottlenecks: (1) rediscovery of known compounds from complex
plant extracts during bioactivity-guided discovery approaches, (2) difficult scaled production of chemically
complex lead structures by organic synthesis or source plant extraction, and (3) limited diversification of lead
structures due to molecular complexity. Recent advances in plant omics-technologies and plant synthetic biology
offer solutions to these general bottlenecks of natural product drug discovery by a gene-guided discovery
approach. Herein, prioritization of new plant metabolites can be enabled by mass spectrometry (MS)-based
metabolomics of plant extracts and prediction of biosynthetic genes from plant genomes. Heterologous
expression of biosynthetic genes allows source-independent production of target plant natural products in
microbial and eukaryotic host organisms. Genetic modification of biosynthetic pathways enables the formation
of target natural product analogs. Cyclic plant peptides are a class of plant natural products with potential
applications in antiviral and anticancer therapy due to oral bioavailability, stability and diversifiability. Our lab
recently characterized a new plant-specific peptide cyclase called the BURP domain, which is an autocatalytic
copper-dependent enzyme family involved in the biosynthesis of ribsomally encoded and posttranslationally
modified peptides (RiPPs) with side-chain-macrocyclizations via tyrosines and tryptophans. Our objective is to
overcome the aforementioned bottlenecks of plant-based drug discovery by developing a workflow for the
systematic discovery of cyclic peptides from plants, characterizing BURP domain peptide cyclases for scaled in
vivo or in vitro production of cyclic plant peptides and establishing a biocatalytic platform for the diversification of
cyclic plant peptides via BURP domain cyclases for therapeutic evaluation. Herein, systematic identification of
new side-chain-macrocyclic RiPP classes will be accomplished by connecting tandem MS spectra of candidate
peptide analytes to BURP domain genes in plant genomes and transcriptomes. We will investigate the structure
and function of known autocatalytic classes of BURP domain peptide cyclases, characterize BURP domain
peptide cyclases, which act on separate precursor peptide substrates and identify enzymes involved in N- and
C-terminal protection of BURP-domain-derived RiPPs. Finally, libraries of antiviral cyclopeptide alkaloids from
Chinese date tree (Ziziphus jujuba) and anticancer celogentin peptides from Celosia argentea will be generated
by design and optimization of biocatalytic routes and evaluated in in vivo cell-based assays. As plant genomic
resources are rapidly growing, the proposed research will set the stage for using plant genetic information for
the discovery and development of medicinal plant natural products.
项目摘要
植物一直是药用天然产物的重要来源,约25%的FDA批准的药物
灵感来自植物化学物质。然而,基于植物的新药的发现和开发,
天然产物是具有挑战性的,由于三个主要瓶颈:(1)从复杂的化合物中重新发现已知化合物
植物提取物在生物活性指导的发现方法,(2)难以规模化生产的化学
通过有机合成或源植物提取的复杂铅结构,以及(3)铅的有限多样化
由于分子结构的复杂性。植物组学技术与植物合成生物学研究进展
通过基因引导的发现,为天然产物药物发现的这些一般瓶颈提供解决方案
approach.本文中,新植物代谢物的优先级排序可以通过基于质谱(MS)的方法来实现。
植物提取物的代谢组学和从植物基因组预测生物合成基因。异源
生物合成基因的表达允许靶植物天然产物的来源无关性生产,
微生物和真核宿主生物。生物合成途径的遗传修饰使得
目标天然产物类似物。环植物肽是一类具有开发潜力的植物天然产物
由于口服生物利用度、稳定性和多样性,其在抗病毒和抗癌治疗中的应用。我们实验室
最近鉴定了一种新的植物特异性肽环化酶,称为BURP结构域,它是一种自催化的环化酶。
铜依赖酶家族参与核糖体编码和后分泌的
修饰肽(RIPPs)通过酪氨酸和色氨酸进行侧链大环化。我们的目标是
克服上述瓶颈的植物为基础的药物发现,通过开发工作流程,
从植物中系统地发现环肽,表征BURP结构域肽环化酶,
环植物肽的体内或体外生产,并建立生物催化平台,
通过BURP结构域环化酶的环状植物肽用于治疗评价。在此,系统识别
新的侧链-大环RiPP类别将通过连接候选化合物的串联MS光谱来实现
肽分析物与植物基因组和转录组中的BURP结构域基因。我们将研究其结构
和已知的自催化类的BURP结构域肽环化酶的功能,表征BURP结构域
肽环化酶,其作用于单独的前体肽底物并鉴定参与N-和
BURP结构域衍生的RIPP的C末端保护。最后,从抗病毒环肽生物碱库,
本研究将从枣树中提取抗癌活性肽,并从青冠草中提取抗癌活性肽
通过设计和优化生物催化途径,并在体内基于细胞的测定中进行评价。作为植物基因组
资源正在迅速增长,拟议的研究将为利用植物遗传信息
药用植物天然产物的发现和开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roland David Kersten其他文献
Roland David Kersten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 33.97万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 33.97万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 33.97万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 33.97万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 33.97万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 33.97万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 33.97万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 33.97万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 33.97万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 33.97万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




