Characterizing the evolutionary architecture of complex disease within and across diverse populations
表征不同人群内部和不同人群之间复杂疾病的进化结构
基本信息
- 批准号:10653221
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesArchitectureAtlasesAwarenessBiological AssayCatalogsCellsComplexCoupledDataDiseaseEthnic OriginEtiologyEuropean ancestryExhibitsFrequenciesGene FrequencyGenesGeneticGenetic ModelsGenetic RiskGenetsGenomeGenomicsGeographyHeritabilityHeterogeneityIndividualInheritedLinkage DisequilibriumMapsMediatingMessenger RNAMethodsModelingMolecularNatural SelectionsPathway interactionsPerformancePeripheralPhenotypePopulationPopulation HeterogeneityProceduresReduce health disparitiesReporterReproducibilityResearch PersonnelResolutionRiskRoleRunningSample SizeShapesSignal TransductionSusceptibility GeneTestingTranslatingWorkcausal variantdirect applicationdisease phenotypedisorder riskdisparity reductionexperimental studyfunctional genomicsgenetic architecturegenetic variantgenome wide association studygenome-widehealth disparityimprovedlarge scale datamenmetabolic abnormality assessmentmolecular modelingmolecular phenotypemolecular scalemolecular shapemulti-ethnicnovelnovel strategiesopen sourcepolygenic risk scorepopulation stratificationpressurerisk predictionstatisticstraittranscriptomics
项目摘要
PROJECT SUMMARY
The past decade of genome-wide association studies (GWASs) has seen thousands of complex traits and
diseases studied and identified thousands of reproducibly associated genetic variants. GWAS has helped
characterize the complexity of common genetic architectures and shed light on the role of genetics in disease
risk. A large body of works have demonstrated that risks of complex traits are highly enriched in functional regions
of the genome, which indicates that risk is mediated through perturbed regulatory action on relevant susceptibility
genes. Similarly, multiple recent works have found that disease risks are shaped by forces of natural selection,
which kept the frequencies of deleterious alleles low in the population. Together, the functional mechanisms and
their interplay with natural selection can be coupled under a general mechanism we refer to as the evolutionary
architecture. Current frameworks to infer the evolutionary architecture for common complex diseases are only
applicable to relatively homogenous populations, such as individuals of European ancestry. Several recent works
have demonstrated that integrating multi-ethnic GWAS data substantially improves statistical power to identify
causal factors underlying complex traits and diseases due to the increased heterogeneity in allele frequencies.
Current approaches evolutionary architecture are unable to appropriately model the heterogeneity across
populations with respect to allele frequencies and linkage disequilibrium. Similarly, the resolution of these
methods is currently limited to complex diseases and phenotypes, whose inferred architectures, while
informative, fail to describe regulatory network mechanisms that mediate risk. Methods capable of analyzing
many molecular phenotypes simultaneously have the potential to identify shared architectures, and pinpoint core
genes relevant for disease risk. Lastly, several works have shown that integrating functional information with
GWAS substantially improves polygenic risk prediction. Together, these issues and opportunities highlight the
need for new computational approaches that can scale to multiple populations and large-scale molecular
phenotype catalogues while accounting for underlying heterogeneity and shared signals. Here, we propose novel
approaches to integrate GWAS data from multiple, geographically diverse, populations and phenotypes to
characterize the population-specific and shared evolutionary architectures. Importantly, our approaches run
directly on summary data, which enables immediate large-scale analysis. We propose to apply our novel
approaches to large-scale multi-ethnic GWAS data. Together, our work will systematically characterize
evolutionary architectures for complex diseases and molecular phenotypes and populations in a robust, open,
and reproducible approach.
项目总结
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating heritability explained by local ancestry and evaluating stratification bias in admixture mapping from summary statistics.
估计由当地血统解释的遗传力,并根据汇总统计评估混合映射中的分层偏差。
- DOI:10.1101/2023.04.10.536252
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chan,TszFung;Rui,Xinyue;Conti,DavidV;Fornage,Myriam;Graff,Mariaelisa;Haessler,Jeffrey;Haiman,Christopher;Highland,HeatherM;Jung,SuYon;Kenny,Eimear;Kooperberg,Charles;Marchland,LoicLe;North,KariE;Tao,Ran;Wojcik,Genevieve;
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Mancuso其他文献
Nicholas Mancuso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Mancuso', 18)}}的其他基金
An integrative multi-omics approach to characterize prostate cancer risk in diverse populations
一种综合多组学方法来表征不同人群中前列腺癌的风险
- 批准号:
10452535 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
Characterizing the evolutionary architecture of complex disease within and across diverse populations
表征不同人群内部和不同人群之间复杂疾病的进化结构
- 批准号:
10302919 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
An integrative multi-omics approach to characterize prostate cancer risk in diverse populations
一种综合多组学方法来表征不同人群中前列腺癌的风险
- 批准号:
10186390 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
An integrative multi-omics approach to characterize prostate cancer risk in diverse populations
一种综合多组学方法来表征不同人群中前列腺癌的风险
- 批准号:
10657510 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 71.92万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:














{{item.name}}会员




