Advanced Tissue Engineered Models of Human Cartilage for Studying Joint Disease
用于研究关节疾病的先进人体软骨组织工程模型
基本信息
- 批准号:10403942
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlcian BlueAnatomyArchitectureBenchmarkingBiochemicalBiological AvailabilityBiologyBiomechanicsBioreactorsBone MatrixCartilageCartilage DiseasesChemicalsChondrogenesisClinical DataCollagenComputer ModelsConnective Tissue DiseasesCritical PathwaysCuesDataDefectDegenerative polyarthritisDevelopmentDiseaseDisease ProgressionDisease modelElectron MicroscopyEncapsulatedEngineeringExhibitsFrictionGenerationsHealthHistologyHumanHydrogelsIn VitroInjuryJointsLabelLigandsLightMaintenanceMarfan SyndromeMediatingMendelian disorderMetabolicMethodologyMethodsModelingMolecularMusculoskeletal DevelopmentNatureOutcomePatientsPerfusionPhysiologicalPlayProteoglycanQuality of lifeRegimenRegulationResolutionRodentRodent ModelRoleSepharoseSignal TransductionSpecificityStructureStudy modelsSystemTestingThickTissue EngineeringTissue ModelTissuesTransforming Growth Factor betaTransforming Growth Factor beta ReceptorsTraumaWorkarthropathiesarticular cartilagebasebonebone engineeringbone qualitycartilage developmentdesigndisease phenotypefibrillinhealinghuman modelhuman tissuein vitro Modelin vivo Modelmolecular markernovelnovel therapeuticsoptogeneticsosteochondral tissueosteogenicprogenitorrepairedspatiotemporalsubchondral bonetool
项目摘要
PROJECT SUMMARY / ABSTRACT
Disease and trauma of articular cartilage are highly debilitating to the quality of life, as damaged cartilage has a
very limited ability for self-repair. The management of articular cartilage defects continues to be a prevalent and
challenging problem with limited treatment options, in part due to the lack of high-fidelity models that would
advance our understanding of disease/injury progression and enable testing of novel therapeutics. Rodents are
commonly used to study joint disease and development, yet they fail to recapitulate key aspects of human
cartilage anatomy and biology, in particular the intricate zonal organization of human cartilage. While engineered
in vitro models can be biologically faithful, they generally lack the complexity offered by in vivo models, including
the interactions with other tissues. To address this gap, I propose to engineer zonally organized human cartilage
in vitro by applying the appropriate spatiotemporal gradients of TGF-β signaling (Aim 1), while concurrently
including living subchondral bone for enhanced osteochondral interactions (Aim 2). I seek to demonstrate the
utility of this human cartilage model for studying joint disease using a monogenic connective tissue disorder,
Marfan syndrome (MFS), in which fibrillin defects affect TGF-β bioavailability and musculoskeletal development
(Aim 3). I hypothesize that the precise regulation of TGF-β signaling and the inclusion of a subchondral bone
substrate will generate native-like human articular cartilage with zonal organization and cartilage-bone
interactions, which can be used to model diseases such as MFS. Optogenetics presents a strategy by which we
can control TGF-β signaling by light with unprecedented precision. At the osteochondral junction, biochemical
and biomechanical interactions mediate cartilage health and disease, yet most established cartilage models fail
to incorporate bone due to the complexity of supporting both tissue types. Our lab has designed perfusion
bioreactors which can provide separate physical and chemical cues to each tissue type to overcome this
challenge. Using MFS patient-derived hiPSCs, the advanced engineered cartilage model will be used to
recapitulate functional and structural features of disease, benchmarked to clinical data and compared to data
from existing in vitro models of chondrogenic micromass cultures. The proposed work will establish a novel
method for cartilage tissue engineering and provide an advanced human tissue model for studying joint diseases.
项目总结/摘要
关节软骨的疾病和创伤对生活质量是高度衰弱的,因为受损的软骨具有
自我修复的能力非常有限。关节软骨缺损的治疗仍然是一个普遍的,
治疗方案有限的挑战性问题,部分原因是缺乏高保真模型,
推进我们对疾病/损伤进展的理解,并使新疗法的测试成为可能。啮齿类动物
通常用于研究关节疾病和发育,但它们未能概括人类的关键方面,
软骨解剖学和生物学,特别是人类软骨复杂的带状组织。虽然工程
体外模型可以是生物学上的忠实的,它们通常缺乏体内模型所提供的复杂性,包括
与其他组织的相互作用。为了解决这一差距,我建议设计分区组织的人类软骨
在体外通过应用适当的TGF-β信号传导的时空梯度(目的1),同时
包括活的软骨下骨,用于增强骨软骨相互作用(Aim 2)。我试图证明
使用单基因结缔组织疾病研究关节疾病的人软骨模型的用途,
马凡氏综合征(MFS),其中TGF-β缺陷影响TGF-β生物利用度和肌肉骨骼发育
(Aim 3)。我假设TGF-β信号的精确调节和软骨下骨的包含
基质将产生具有带状组织和软骨-骨天然样人关节软骨
相互作用,可用于模拟疾病,如MFS。光遗传学提出了一种策略,
可以通过光以前所未有的精确度控制TGF-β信号传导。在骨软骨连接处,生化
和生物力学相互作用介导软骨健康和疾病,但大多数建立的软骨模型失败
由于支持两种组织类型的复杂性,我们的实验室设计了灌注
生物反应器可以为每种组织类型提供单独的物理和化学线索,
挑战.使用MFS患者来源的hiPSC,先进的工程化软骨模型将用于
概括疾病的功能和结构特征,以临床数据为基准并与数据进行比较
从现有的软骨形成微团培养物的体外模型。这项拟议中的工作将建立一个小说
为研究关节疾病提供了先进的人体组织模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josephine Wu其他文献
Josephine Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josephine Wu', 18)}}的其他基金
Advanced Tissue Engineered Models of Human Cartilage for Studying Joint Disease
用于研究关节疾病的先进人体软骨组织工程模型
- 批准号:
10156307 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists