Alternative Splicing Regulation and Mechanotransduction in Skeletal Muscle
骨骼肌中的选择性剪接调节和机械转导
基本信息
- 批准号:10403954
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-11-18
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdultAffectAlternative SplicingAntisense OligonucleotidesAtomic Force MicroscopyBindingBiochemicalBioinformaticsBiologyCellsCellular biologyCo-ImmunoprecipitationsCodeCommunicationCommunitiesComplexCouplingCritical ThinkingDataDefectDevelopmentDevelopmental GeneDoctor of PhilosophyEducationEducational process of instructingEmbryoEnvironmentExhibitsExonsFellowshipGenerationsGenesGeneticGenetic TranscriptionGoalsGrowthHumanIndividualKnockout MiceLeadLifeMeasuresMembraneMentorsMentorshipMicrofilamentsMicroscopyMolecularMovementMuscleMuscle CellsMuscle ContractionMuscle DevelopmentMuscle FibersMuscle ProteinsMuscular AtrophyMuscular DystrophiesMyopathyNorth CarolinaNuclear TranslocationNucleotidesPathologicPathway interactionsPeriodicityPersonsPhosphorylationPhysicsPhysiologicalPlayPolypyrimidine Tract-Binding ProteinPositioning AttributeProcessProtein IsoformsProteinsPublic HealthPublishingRNARNA ProcessingRNA SplicingRNA-Binding ProteinsRegulationResearchResearch PersonnelRoleSarcomeresSignal TransductionSkeletal MuscleSolidStretchingStriated MusclesTestingTimeTissuesTrainingUniversitiesVariantWestern BlottingWritingactin capping proteincareercollaborative environmentextracellularfetalinsightinterdisciplinary approachmRNA Precursormechanical propertiesmechanical stimulusmechanotransductionmultidisciplinarymuscle physiologymuscular structuremyogenesisnovelprogramsrecruitresponseskillstraffickingtranscriptome sequencingtransmission process
项目摘要
PROJECT SUMMARY/ABSTRACT
Skeletal muscle allows for controlled movement and fine-tuned coordination throughout the entire life of an
individual. In all cells, the response to physical forces is critical; however, this is particularly important in skeletal
muscles to facilitate movement, contraction, and force generation. Mechanotransduction allows cells to sense
and respond to the external environment. In muscle cells, forces transmit through the Z-disc which are
interspersed between sarcomeres and anchor actin filaments. In numerous muscular diseases and myopathies,
mechanotransduction is altered and leads to loss of force, muscle wasting, and increased stiffness. At the
molecular level, these pathological alterations are accompanied by extensive transcriptional changes and mis-
regulation of alternative splicing, an RNA processing mechanism that allows single genes to code for multiple
protein isoforms. A unique feature of skeletal muscle is that it exhibits one of the highest levels of tissue-specific
and evolutionarily conserved alternative splicing.
During muscle development, extensive alternative splicing changes occur to facilitate maturation of the
tissue. Interestingly, numerous genes developmentally regulated by splicing encode proteins that are involved
in membrane trafficking and localize to the sarcomere. One of these genes encodes the Capping Actin Protein
of Muscle Z-Line Subunit Beta (CAPZB) protein. Besides its critical function in capping actin, CAPZB plays
unconventional roles in sarcomere organization. Surprisingly, how mechanotransduction and alternative
splicing are interconnected in muscles has not been deeply investigated and can reveal new insights about
muscle diseases. In my proposal, I hypothesize that alternative splicing regulation contributes to the
development of the mechanical properties of skeletal muscle. I will test this hypothesis in two specific aims. In
aim 1, I will identify the role of two splicing regulators, the poly-pyrimidine tract binding protein 1 (PTBP1) and
quaking protein (QK), in controlling the mechanical properties of muscle cells by stretching cells and
investigating effects on mechanosensitive pathways. In aim 2, I will determine how CAPZB and its splice forms
contribute to the mechanosensitivity of muscle cells by using force microscopy and functional studies.
My long-term goal is to be an independent scientific leader who can lead a team. Therefore, the training
I will receive through this fellowship will facilitate my growth in becoming a muscle biologist with expertise in
RNA processing, and solid skills in mentorship, writing and teaching. My sponsor and co-sponsor are experts
in muscle physiology, cell biology, and, alternative splicing and I have recruited collaborators and mentors with
expertise in physics and mechanotransduction to facilitate a multidisciplinary dissertation. All of them are
strongly committed to mentoring and education and will support me during my Ph.D. and as I move forward in
my career. Finally, the University of North Carolina at Chapel Hill has strong communities of RNA Biology,
mechanotransduction, and membrane trafficking that contribute to the collaborative environment I am part of.
项目摘要/摘要
骨骼肌可以在整个生命中进行控制和微调的协调
个人。在所有细胞中,对物理力的反应至关重要。但是,这在骨骼中尤其重要
肌肉促进运动,收缩和力量产生。机械转移使细胞感知
并回应外部环境。在肌肉细胞中,力通过z二轴传播
散布在肉瘤和锚固肌动蛋白丝之间。在许多肌肉疾病和肌病中,
机械转导改变并导致力损失,肌肉浪费和增加的刚度。在
分子水平,这些病理改变伴随着广泛的转录变化和错误
调节替代剪接的调节,一种RNA处理机制,允许单个基因代码多个
蛋白质同工型。骨骼肌的独特特征是它表现出最高水平的组织特异性
和进化保守的替代剪接。
在肌肉发育期间,发生了广泛的替代剪接变化,以促进
组织。有趣的是,通过剪接编码蛋白质在发育中发育中的许多基因
在膜贩运中,本地化到肉皮。这些基因之一编码粘蛋白蛋白上限
肌肉Z线亚基β(CAPZB)蛋白的蛋白质。除了它在封闭肌动蛋白方面的关键功能外,CAPZB播放
肌节组织中非常规角色。令人惊讶的是,机械转移和替代方式如何
在肌肉中互连的剪接尚未进行深入研究,可以揭示有关有关的新见解
肌肉疾病。在我的提议中,我假设替代拼接法规有助于
骨骼肌机械性能的发展。我将以两个具体的目的来检验这一假设。在
AIM 1,我将确定两个剪接调节剂的作用,即多吡啶氨酸裂纹结合蛋白1(PTBP1)和
Quaking蛋白(QK),通过拉伸细胞和
研究对机械敏感途径的影响。在AIM 2中,我将确定CAPZB及其剪接形式如何
通过使用力显微镜和功能研究来促进肌肉细胞的机械敏感性。
我的长期目标是成为可以领导团队的独立科学领袖。因此,培训
我将通过这项奖学金获得,将有助于成为具有专业知识的肌肉生物学家的成长
RNA处理以及指导,写作和教学方面的扎实技能。我的赞助商和共同赞助商是专家
在肌肉生理学,细胞生物学以及替代剪接方面,我已经招募了合作者和导师
物理和机械转导专业知识,以促进多学科论文。他们都是
强烈致力于指导和教育,并将在我的博士学位上支持我。当我前进
我的职业。最后,北卡罗来纳大学教堂山分校拥有牢固的RNA生物学社区,
机械转移和膜贩运有助于我的合作环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma Hinkle其他文献
Emma Hinkle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
ACTIVITY-DRIVEN PLASTICITY OF THE HAIR CELL CYTOSKELETON
活动驱动的毛细胞细胞骨架的可塑性
- 批准号:
10748106 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别: