A Multifaceted Radiomics Model to Predict Cervical Lymph Node Metastasis for Involved Nodal Radiation Therapy
预测涉及淋巴结放射治疗的颈部淋巴结转移的多方面放射组学模型
基本信息
- 批准号:10654048
- 负责人:
- 金额:$ 43.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAreaBenignCancer PatientCervicalCervical lymph node groupCharacteristicsClassificationClinicalDataDatabasesDeglutition DisordersDevelopmentDiseaseDoseEmission-Computed TomographyEvaluationExternal Beam Radiation TherapyFailureGoalsHead and Neck CancerHead and neck structureImageIntensity-Modulated RadiotherapyLeadLungLymphomaMalignant - descriptorMalignant NeoplasmsMetastatic Neoplasm to Lymph NodesModalityModelingNeckNodalOperative Surgical ProceduresPancreasPathologyPatientsPerformancePharyngeal structurePhasePhase II Clinical TrialsPositron-Emission TomographyProbabilityQuality of lifeRadiation Dose UnitRadiation therapyRandomizedRecurrenceRegistriesRiskRisk EstimateSensitivity and SpecificitySiteSourceTestingTherapeuticToxic effectTrainingTumor VolumeUncertaintyValidationX-Ray Computed TomographyXerostomiaarmchemoradiationclinical investigationcohortconvolutional neural networkdesigndraining lymph nodeefficacy evaluationflexibilityfollow-uphead and neck cancer patienthigh riskimaging modalityimprovedimproved outcomelymph nodeslymphadenopathymachine learning methodmultimodalityovertreatmentphase 2 studypredictive modelingpredictive toolsprophylacticprospectivequantitative imagingradiomicsrandomized trialsoft tissuesoundstandard of caretool
项目摘要
A Multifaceted Radiomics Model to Predict Cervical Lymph Node Metastasis for Involved
Nodal Radiation Therapy
PROJECT SUMMARY
The majority of disease sites treated with radiation therapy (RT) no longer receive elective/prophylactic RT to
clinically-negative areas, including lung, pancreas, and lymphoma. These disease sites now employ involved
nodal radiotherapy (INRT), focusing on involved lymphadenopathy. However, in head and neck cancer (HNC),
we still target the same lymph node regions as conventional 2D radiotherapy, despite our ability to tailor the
radiotherapy volume and dose to specific areas using intensity modulated radiation therapy (IMRT). This
approach leads to excessive acute and long-term toxicities for HNC patients after RT. Therefore, INRT is highly
desirable for HNC. In INRT, one particular challenge during gross tumor volume (GTV) and clinical target volume
(CTV) delineation is the identification of malignant lymphadenopathy. While some lymph nodes (LNs) are
obviously malignant based on standard imaging modalities, there is often uncertainty about whether a LN is
malignant and requires targeting. Treating benign nodes as malignant may cause a significantly higher risk of
late complications, such as xerostomia and dysphagia. On the other hand, missing occult lymphadenopathy will
lead to regional recurrence. The goal of this project is to develop, optimize, and test a multifaceted predictive
model with both high sensitivity and specificity for LN metastasis classification to maximize the efficacy and
minimize the toxicity of INRT for HNC. The proposed multifaced model presents a flexible framework and
considers multiple aspects of a predictive model, including: 1) Evaluation criteria used in model training (multi-
objective); 2) Different sources of information (multi-modality); and 3) Classifiers used for model construction
(multi-classifier). By designing a multi-objective function, we will consider sensitivity and specificity
simultaneously during model training and optimization. Instead of blindly combining features extracted from
different modalities and empirically choosing one preferred classifier, the information extracted by modality-
specific classifiers will be combined optimally through a reliable classifier fusion (RCF) strategy. We will develop
a prospective registry database to train the multi-classifier, multi-objective and multi-modality (MCOM) model
through prospectively collecting clinical characteristics and images of HNC patients who will undergo surgery at
UTSW with pathology-confirmed LN metastasis status. The model will be validated on an independent UTSW
patient cohort and patients who underwent outside imaging but operated at UTSW. The specific aims of the
project are: 1) Develop and validate a multi-classifier, multi-objective and multi-modality (MCOM) LN metastasis
prediction model for HNC patients. 2) Conduct a randomized phase II clinical trial to evaluate the efficacy and
utility of INRT versus conventional radiotherapy for HNC using the MCOM model. Successful completion of this
project will result in the development and validation of a strategy that can identify malignant LNs in HNC with
high sensitivity and specificity, which will lead to improved outcomes for HNC patients who receive INRT.
预测受累颈部淋巴结转移的多方面放射组学模型
淋巴结放射治疗
项目概要
大多数接受放射治疗 (RT) 治疗的疾病部位不再接受选择性/预防性放射治疗
临床阴性区域,包括肺、胰腺和淋巴瘤。这些疾病现场现在雇用了相关人员
淋巴结放射治疗(INRT),重点关注受累淋巴结肿大。然而,在头颈癌 (HNC) 中,
尽管我们有能力定制治疗方案,但我们仍然针对与传统 2D 放射治疗相同的淋巴结区域
使用调强放射治疗 (IMRT) 对特定区域进行放射治疗的体积和剂量。这
这种方法会导致 HNC 患者放疗后出现过度的急性和长期毒性。因此,INRT 高度
HNC 的理想选择。在 INRT 中,大体肿瘤体积 (GTV) 和临床目标体积期间的一项特殊挑战
(CTV) 勾画是恶性淋巴结肿大的识别。虽然某些淋巴结 (LN)
根据标准成像方式,淋巴结显然是恶性的,因此常常不确定淋巴结是否是恶性的。
恶性,需要靶向治疗。将良性淋巴结视为恶性可能会导致显着更高的风险
晚期并发症,如口干和吞咽困难。另一方面,遗漏隐匿性淋巴结肿大将
导致局部复发。该项目的目标是开发、优化和测试多方面的预测
模型对淋巴结转移分类具有高敏感性和特异性,以最大限度地提高疗效和
最大限度地减少 INRT 对 HNC 的毒性。所提出的多面模型提供了一个灵活的框架和
考虑预测模型的多个方面,包括:1)模型训练中使用的评估标准(多方面)
客观的); 2)不同的信息来源(多模态); 3)用于模型构建的分类器
(多分类器)。通过设计多目标函数,我们将考虑敏感性和特异性
在模型训练和优化期间同时进行。而不是盲目地组合提取的特征
不同的模态并凭经验选择一个首选分类器,模态提取的信息
特定的分类器将通过可靠的分类器融合(RCF)策略进行最佳组合。我们将开发
用于训练多分类器、多目标和多模态 (MCOM) 模型的前瞻性注册数据库
通过前瞻性收集即将接受手术的 HNC 患者的临床特征和图像
UTSW 具有病理证实的淋巴结转移状态。该模型将在独立的 UTSW 上进行验证
患者队列和接受外部成像但在 UTSW 进行手术的患者。该计划的具体目标
项目包括: 1) 开发并验证多分类器、多目标和多模态 (MCOM) LN 转移
HNC 患者的预测模型。 2)进行随机II期临床试验以评估疗效和
使用 MCOM 模型比较 INRT 与传统放疗对 HNC 的效用。顺利完成本次
该项目将导致开发和验证一种策略,该策略可以通过以下方法识别 HNC 中的恶性 LN:
高敏感性和特异性,这将改善接受 INRT 的 HNC 患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Sher其他文献
David Sher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Research Grant














{{item.name}}会员




