Informational flow from mechanosensing to signaling for extracellular matrix stiffness sensing
从机械传感到细胞外基质硬度传感信号的信息流
基本信息
- 批准号:10654126
- 负责人:
- 金额:$ 44.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAdhesionsAffectAgingAwardBindingBinding SitesBiosensorBirthCell ProliferationCell membraneCell physiologyCellsClassificationComplexComputer Vision SystemsCoupledCouplingCytoskeletonDataDevelopmentDiseaseEnvironmentEtiologyExtracellular MatrixFibroblastsFluorescence Resonance Energy TransferFocal Adhesion Kinase 1Focal AdhesionsFunctional disorderFundingFutureGelGoalsGrowthHeterogeneityImageIndividualIntegrinsInternationalKnowledgeMalignant NeoplasmsMechanicsMediatingMicroscopicMicroscopyMissionModelingMolecularMolecular ConformationMyosin ATPaseNatural regenerationNeoplasm MetastasisPhosphorylationPhysical environmentPhysiologyPolymersProcessProgress ReportsProliferatingProteinsPublicationsRunningScientistSeriesSignal TransductionSilicone GelsSiteStretchingStudentsTalinTestingTimeTissuesTractionTrainingTranslatingUnited States National Institutes of HealthVinculincancer cellcareercell behaviorcell motilitycomputer frameworkdesigndevelopmental diseaseinsightlive cell imagingmechanical forcemechanotransductionmigrationmultidisciplinarynovelpolymerizationrecruitresponserhosensorsymposiumtissue regenerationtransmission processtreatment strategytumor progressionundergraduate student
项目摘要
Project Summary
Tissue stiffness changes during development, aging and diseases. Sensing this stiffness by cells determines
differentiation, proliferation, migration, and survival, which are all important for development and tissue
regeneration. Local tissue stiffening is a hallmark of cancer, sensing of which by cancer cells causes further
tumor progression and metastasis. Understanding stiffness sensing mechanism is thus essential for designing
appropriate treatment strategy against developmental disorders and cancer. A prominent sensor for the tissue
stiffness is a molecular complex located between the cell and the environment, referred to as a focal adhesion.
The first step in stiffness sensing involves transmission of increased level of a force across molecules in the focal
adhesion against higher tissue stiffness. From the on-going funding, we discovered that this differential force
transmission is independent of myosin contractility, the main force generator within cytoskeleton, and strongly
depends on actin polymerization assisted by its nucleators by creating a backward flow against the cell
membrane. The remaining question is how this differential force in response to the tissue stiffness can be
translated to different signals that ultimately regulate cells’ developmental functions. The goal of the proposal is
to understand whether a key focal adhesion-based signaling is caused by sensing activity of a key structural
sensor protein and the force running through it. To achieve this goal, we have developed a set of experimental,
microscopic, computational, and statistical frameworks that allow us to draw a conclusion about causality
between the two time-dependent signals at individual focal adhesions captured from a live-cell imaging and
computer vision. Specifically, we focus on focal adhesion kinase (FAK), which is a signaling hub for focal
adhesion-based signaling but not well known for its coupling to the mechanical sensor, talin. Talin can be
stretched under force and expose binding sites for other molecules like a vinculin, another mechanical linker
protein. The overall objective of this renewal proposal is to use these multi-disciplinary pipelines to test a novel
conceptual model of stiffness sensing in which the stiffness-dependent FAK activation is induced by talin’s
mechanical sensing and the differential force in a manner that is dependent on focal adhesions’ dynamic state.
We will determine 1) if FAK recruitment and activation are caused by talin recruitment and mechanosensitivity,
2) if FAK activation is caused by the mechanical force, 3) how FAK activation promotes RhoA signaling for
stiffness sensing. An enhanced mechanistic understanding of these processes would increase our fundamental
knowledge of how cells sense and respond to tissue mechanics. Thus, the proposed studies are relevant to the
NIH's mission, as they will lead to new insights in physiology and pathophysiology including tissue development,
regeneration and cancer progression.
项目摘要
组织硬度在发育、衰老和疾病过程中发生变化。细胞感知到这种硬度,
分化、增殖、迁移和存活,这些都对发育和组织
再生局部组织硬化是癌症的一个标志,癌细胞对其的感知导致进一步的
肿瘤进展和转移。因此,了解刚度传感机制对于设计
针对发育障碍和癌症的适当治疗策略。一个突出的组织传感器
硬度是位于细胞和环境之间的分子复合物,称为粘着斑。
刚度感测的第一步涉及在焦点中的分子之间传递增加水平的力。
对较高组织硬度的粘附。从持续的资助中,我们发现这种差异力
传输不依赖于肌球蛋白收缩性,肌球蛋白收缩性是细胞骨架内的主要力发生器,
依赖于肌动蛋白的聚合,并由其成核剂通过对细胞产生反向流动来辅助
膜的剩下的问题是如何响应于组织硬度的这种差动力可以是
翻译成不同的信号,最终调节细胞的发育功能。该提案的目的是
为了理解关键的基于粘着的信号传导是否是由关键结构的感知活动引起的,
传感器蛋白质和通过它的力量。为了实现这一目标,我们已经开发了一套实验,
微观、计算和统计框架,使我们能够得出因果关系的结论
在从活细胞成像捕获的单个粘着灶处的两个时间依赖性信号之间,
计算机视觉具体来说,我们专注于黏着斑激酶(FAK),这是一个信号枢纽,为局灶性
基于粘附的信号传导,但其与机械传感器talin的偶联并不为人所知。塔林可以是
在外力作用下被拉伸,暴露出与其他分子结合的位点,如粘着斑蛋白,另一种机械连接物
蛋白这一更新提案的总体目标是利用这些多学科管道来测试一种新的
塔林氏症诱导与刚度相关的FAK激活的刚度传感概念模型
机械感测和差动力以取决于焦点粘连的动态状态的方式进行。
我们将确定1)FAK募集和激活是否由talin募集和机械敏感性引起,
2)如果FAK激活是由机械力引起的,3)FAK激活如何促进RhoA信号传导,
刚度检测增强对这些过程的机械理解将增加我们的基础知识。
细胞如何感知和响应组织力学的知识。因此,拟议的研究与
NIH的使命,因为他们将导致生理学和病理生理学,包括组织发育的新见解,
再生和癌症进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangyoon Joshua Han其他文献
Sangyoon Joshua Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:














{{item.name}}会员




