Synaptic to circuit homeostasis in the Drosophila locomotor system

果蝇运动系统中的突触与电路稳态

基本信息

  • 批准号:
    10654556
  • 负责人:
  • 金额:
    $ 30.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

What sets the transmission strength of synapses? What determines their plasticity properties? How do synapses homeostatically adjust synaptic weight to accommodate to changing conditions and ensure robust behavior? What happens if synaptic homeostasis is insufficient to compensate for a disruption or a change in demand, are other backup mechnisms of compensation recruited and, if so, how do they work? We combine in vivo super-resolution quantal imaging of synaptic transmission and behavioral analysis with focused RNAi knockdown in one cell type and single cell transcriptome analysis to address these questions. Our preparation is the Drosophila larval neuromuscular junction—an ideal system for imaging and genetics, which shares synaptic signaling machinery and functional properties with vertebrate central excitatory synapses. Our in vivo quantal analysis has revealed that two converging glutamatergic motor neuron (MN) inputs have great heterogeneity in evoked release probability (Pr) and short-term plasticity and that only Ib undergoes “synaptic homeostasis,” whereby transmitter release changes to compensate for altered postsynaptic sensitivity. Our goal is to identify the molecules responsible for the synapse to synapse and input to input differences. Equally exciting, preliminary work suggests the existence of a novel layer of gain control: “circuit homeostasis,” which is recruited when synaptic transmission is so compromised that “synaptic homeostasis” cannot compensate sufficiently. The circuit homeostasis system adjusts neural firing pattern in the presynaptic cell and upstream circuit to preserve locomotor behavior when synaptic transmission is inadequate. Our goal is to define the mechanisms that assure neural output by setting and adjusting transmitter release and firing dynamics. Progress will provide fundamental insight into the robustness of the nervous system that preserves health and which may cause disease when it goes awry.
是什么决定了突触的传递强度?是什么决定了它们的可塑性?怎么 突触自稳态地调整突触权重以适应变化的条件并确保鲁棒性。 行为?如果突触内稳态不足以补偿神经元的破坏或改变, 需求,是否有其他补偿机制,如果有,它们是如何工作的?我们将联合收割机 体内突触传递的超分辨率量子成像和聚焦RNAi的行为分析 在一种细胞类型中的敲减和单细胞转录组分析来解决这些问题。我们的准备 是果蝇幼虫神经肌肉接头-成像和遗传学的理想系统, 脊椎动物中枢兴奋性突触的突触信号机制和功能特性。我们的体内 量子分析表明,两个会聚的运动神经元(MN)输入具有很大的 在诱发释放概率(Pr)和短期可塑性中不均匀性,只有Ib经历“突触 内稳态”,由此递质释放变化以补偿改变的突触后敏感性。我们 目标是确定负责突触与突触和输入与输入差异的分子。同样 令人兴奋的初步工作表明存在一种新的增益控制层:“电路稳态”, 当突触传递受到严重损害,“突触稳态”无法补偿时, 足够了。回路稳态系统调节突触前细胞和上游的神经放电模式 当突触传递不充分时保持运动行为的回路。我们的目标是定义 通过设置和调整发射器释放和发射动力来确保神经输出的机制。 这一进展将为我们提供有关神经系统强健性的基本见解, 一旦出了差错就可能导致疾病

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ehud Isacoff其他文献

Ehud Isacoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ehud Isacoff', 18)}}的其他基金

Conformational mechanisms of mGluR gating and regulation
mGluR 门控和调节的构象机制
  • 批准号:
    10298420
  • 财政年份:
    2021
  • 资助金额:
    $ 30.87万
  • 项目类别:
Conformational mechanisms of mGluR gating and regulation
mGluR 门控和调节的构象机制
  • 批准号:
    10665636
  • 财政年份:
    2021
  • 资助金额:
    $ 30.87万
  • 项目类别:
Conformational mechanisms of mGluR gating and regulation
mGluR 门控和调节的构象机制
  • 批准号:
    10443878
  • 财政年份:
    2021
  • 资助金额:
    $ 30.87万
  • 项目类别:
Optical control of neuromodulatory GPCRs
神经调节 GPCR 的光学控制
  • 批准号:
    10012228
  • 财政年份:
    2020
  • 资助金额:
    $ 30.87万
  • 项目类别:
Synaptic to circuit homeostasis in the Drosophila locomotor system
果蝇运动系统中的突触与电路稳态
  • 批准号:
    10438585
  • 财政年份:
    2019
  • 资助金额:
    $ 30.87万
  • 项目类别:
Synaptic to circuit homeostasis in the Drosophila locomotor system
果蝇运动系统中的突触与电路稳态
  • 批准号:
    10210452
  • 财政年份:
    2019
  • 资助金额:
    $ 30.87万
  • 项目类别:
Voltage Gating Mechanisms
电压门控机制
  • 批准号:
    9010555
  • 财政年份:
    2016
  • 资助金额:
    $ 30.87万
  • 项目类别:
Novel tools for cell-specific imaging of functional connectivity and circuit operations
用于功能连接和电路操作的细胞特异性成像的新工具
  • 批准号:
    9343283
  • 财政年份:
    2015
  • 资助金额:
    $ 30.87万
  • 项目类别:
Novel tools for cell-specific imaging of functional connectivity and circuit operations
用于功能连接和电路操作的细胞特异性成像的新工具
  • 批准号:
    9036880
  • 财政年份:
    2015
  • 资助金额:
    $ 30.87万
  • 项目类别:
Optical control of synaptic transmission for in vivo analysis of brain circuits and behavior
突触传递的光学控制用于脑回路和行为的体内分析
  • 批准号:
    8934227
  • 财政年份:
    2014
  • 资助金额:
    $ 30.87万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 30.87万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 30.87万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 30.87万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 30.87万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 30.87万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 30.87万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了