3D Printed Biomimetic Bioglass-Gradient Matrices for ACL Reconstruction
用于 ACL 重建的 3D 打印仿生生物玻璃梯度矩阵
基本信息
- 批准号:10654089
- 负责人:
- 金额:$ 44.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAccelerationAffectAnterior Cruciate LigamentArchitectureAutologous TransplantationBiochemicalBioglassBiomimeticsBiophysicsBone TransplantationCell Differentiation processCell LineageCellsClinicalCollagenCollagen FiberComplexConnective TissueCuesDegenerative polyarthritisDoseFailureFemaleFemurFiberFibrocartilagesFunctional RegenerationGoalsHealth Care CostsHeterogeneityImplantIn VitroInflammatory ResponseInkJointsKnee jointLengthLigamentsMagnetismMechanicsMethodologyMineralsModelingNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOsteogenesisOutcomeOutcome MeasurePatientsPerformancePhasePhenotypePlayPredispositionPrintingProcessProductionRaman Spectrum AnalysisReconstructive Surgical ProceduresReportingRoleRotator CuffSchemeSideSiteTechniquesTechnologyTeenagersTendon structureTissue EngineeringTissue GraftsTissuesTrainingTransforming Growth Factor betaUp-RegulationViscosityanterior cruciate ligament healinganterior cruciate ligament reconstructionanterior cruciate ligament rupturearticular cartilagebonebone strengthcell motilityclinical translationcostdesigndosageearly onsetefficacy evaluationgraft failurehealingimplantationimprovedindexinginnovationinterfacialjoint functionmalemineralizationmusculoskeletal injurynovelscaffoldsexsuccesstibiaundergraduate student
项目摘要
Project Summary
Anterior cruciate ligament (ACL) is a band of connective tissue that connects the femur and the tibia and
plays a crucial role in stabilizing the knee joint. ACL ruptures are very serious musculoskeletal injuries with poor
self-healing capability and often mandate surgical intervention to restore normal joint function. Over 175,000
ACL reconstruction (ACLR) surgeries are performed in the US each year with over 17 billion dollars in lifetime
healthcare costs. While viable graft choices are available, graft failure is reported in 10% of cases. In addition, 1
in 5 teenage athletes reinjure their ACL. Long-term consequences of ACLR include limited mobility of the affected
joint and early onset of osteoarthritis in up to 80% of patients. Further, sex-based differences in healing outcomes
have been reported with females more susceptible to ACL re-tear compared to males. Poor integration of the
ACL graft at the bone-ligament interface (i.e., enthesis) is reported to be the main reason for suboptimal graft
performance and high graft failure rates. Tissue engineering of the graft-tissue interface is a promising alternative
solution to overcome the limitations of existing graft choices and improve the clinical outcome post ACLR. In this
realm, recreating the heterogeneity in composition, architecture and cell phenotype of the native enthesis post
ACLR is deemed to be critically important for improving graft-bone integration, facilitating reliable load transfer,
and restoring long-term normal ACL function. Towards this goal, we propose to develop a novel continuous
gradient-based construct that combines multiple biophysical and biochemical cues on a single platform to guide
functional regeneration of the ACL enthesis. We hypothesize that spatial presentation of tissue-specific cues will
promote cell migration, stimulate multilineage differentiation and matrix remodeling, improve graft integration,
and enable functional healing of enthesis post ACLR. Using support from the first period of this R15 project, we
delivered a continuous biomimetic Bioglass-gradient integrated collagen matrix (BioGIM) that emulates the
composition of the mineralized gradient of the native enthesis. This renewal application has three specific aims.
In Aim 1 studies, 3D printing will be combined with a magnetic alignment approach in a 4D printing scheme to
orient collagen fibers and achieve > 90% collagen alignment index in BioGIMs. Aligned collagen can provide
topographical cues to guide ligamentous differentiation on pure collagen side of the BioGIM. In Aim 2 studies,
TGF-β1 dosage and delivery strategy will be optimized to attain reliable fibrocartilaginous matrix formation on
the BioGIM interface. In addition, multi-lineage cell differentiation and matrix remodeling along the BioGIM will
be assessed. In Aim 3 studies, 4D printed BioGIM flaps will be integrated onto ends of a tendon autograft and
implanted in rabbits. Autograft without BioGIM will serve as clinical control and unoperated healthy rabbits will
be the positive control. Three weeks post implantation, outcomes measured will include mechanical strength of
the bone-ligament interface, typification of de novo matrix remodeling, and inflammatory response. Successful
completion of proposed studies is critical for clinical translation of the novel BioGIM flap for ACL reconstruction.
项目摘要
前交叉韧带(ACL)是连接股骨和胫骨的结缔组织带,
在稳定膝关节方面起着至关重要的作用。ACL断裂是非常严重的肌肉骨骼损伤,
自我愈合能力,并经常要求手术干预,以恢复正常的关节功能。超过175,000人
ACL重建(ACLR)手术在美国每年进行超过170亿美元的寿命
医疗费用。虽然有可行的移植物选择,但10%的病例报告移植物失败。此外,1
在5名青少年运动员中,ACLR的长期后果包括受影响者的流动性有限
高达80%的患者出现关节炎和早期骨关节炎。此外,治疗结果的性别差异
据报道,与男性相比,女性更容易发生ACL再撕裂。集成性差
骨-韧带界面处的ACL移植物(即,据报道,是次优移植物的主要原因
性能和高移植失败率。移植物-组织界面的组织工程是一种很有前途的选择
解决方案,以克服现有移植物选择的局限性,并改善ACLR后的临床结局。在这
reproducing the heterogeneity in composition,architecture and cell phenotype of the native enthesis post
ACLR被认为对于改善移植物-骨结合、促进可靠的载荷转移,
并恢复ACL的长期正常功能。为了实现这一目标,我们建议开发一种新的连续
基于梯度的构建,其在单个平台上组合了多种生物物理和生物化学线索,以引导
ACL附着点的功能性再生。我们假设,组织特异性线索的空间呈现将
促进细胞迁移,刺激多系分化和基质重塑,改善移植物整合,
并使ACLR后的附着点功能性愈合。利用R15项目第一阶段的支持,我们
提供了一种连续的仿生生物玻璃梯度整合胶原蛋白基质(BioGIM),
天然附着点矿化梯度的组成。这次更新申请有三个具体目标。
在Aim 1研究中,3D打印将与4D打印方案中的磁性对齐方法相结合,
在BioGIMs中实现胶原纤维定向和> 90%的胶原排列指数。排列的胶原蛋白可以提供
引导BioGIM纯胶原侧韧带分化的地形线索。在Aim 2研究中,
将优化TGF-β1剂量和递送策略,以在血管内皮细胞上实现可靠的纤维软骨基质形成。
BioGIM接口。此外,多谱系细胞分化和基质重塑沿着BioGIM将
进行评估。在Aim 3研究中,4D打印的BioGIM皮瓣将被整合到肌腱自体移植物的末端,
植入兔子体内不含BioGIM的自体移植物将作为临床对照,未手术的健康家兔将
作为阳性对照。植入后3周,测量的结局将包括
骨-韧带界面、从头基质重塑的典型化和炎症反应。成功
完成所提出的研究对于将新型BioGIM皮瓣用于ACL重建的临床转化至关重要。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In vitro characterization of xeno-free clinically relevant human collagen and its applicability in cell-laden 3D bioprinting.
- DOI:10.1177/0885328220959162
- 发表时间:2021-03
- 期刊:
- 影响因子:2.9
- 作者:Schmitt, Trevor;Kajave, Nilabh;Cai, Huan Huan;Gu, Linxia;Albanna, Mohammad;Kishore, Vipuil
- 通讯作者:Kishore, Vipuil
Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue.
- DOI:10.1088/1748-605x/abc744
- 发表时间:2021-02-26
- 期刊:
- 影响因子:0
- 作者:Kajave NS;Schmitt T;Nguyen TU;Gaharwar AK;Kishore V
- 通讯作者:Kishore V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vipuil Kishore其他文献
Vipuil Kishore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vipuil Kishore', 18)}}的其他基金
3D Printed Biomimetic Bioglass-Gradient Matrices for ACL Reconstruction
用于 ACL 重建的 3D 打印仿生生物玻璃梯度矩阵
- 批准号:
9232729 - 财政年份:2017
- 资助金额:
$ 44.98万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant