Development of an adaptive machine learning platform for automated analysis of biomarkers in biomedical images

开发自适应机器学习平台,用于自动分析生物医学图像中的生物标记物

基本信息

  • 批准号:
    10259501
  • 负责人:
  • 金额:
    $ 94.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Manual analysis of biomedical images by researchers and pathologists is time intensive, requires intensive training, and prone to introduce bias and error. Optical analysis of targets within tissue samples, cultures, or specimens is fundamental to detecting biological properties, including protein interaction within the central nervous system, sperm counts, digestive-system parasites, and immune response to viral infections like COVID-19. Unintentional bias and attentional limitations during analysis of biomarkers can underlie poor reproducibility of findings in biomedical research and potentially introduce errors to clinical diagnostics. These problems are significant barriers to delivering the most beneficial evidence-based medicine, developing effective medical treatments, and promoting public confidence in scientific inquiry. Application of computer vision for cellular target detection is a promising approach to reducing human bias, subjectivity, and errors that limit the reproducibility of research and slow the development of effective medical treatments. Our image analysis software, called Pipsqueak AITM, and the underlying artificial intelligence (AI) technology developed during our NIH SBIR Phase I award, have significantly increased inter- and intra-rater reliability of tissue sample analysis and decreased analysis time for multiplexed biomarkers. Pipsqueak AI is available now as an integration to ImageJ/FIJI (https://Pipsqueak.ai), and is capable of returning hundreds of accurate cellular target detections to the user within 300ms of image upload. During the last 6 months, Pipsqueak usership has exploded to over 1000 active monthly users, indicating high demand for computer vision technologies that improve the speed and accuracy of micrograph quantification. Our pre-trained ML models are capable of detecting multiple cellular morphologies and target types with precision and reproducibility that greatly exceed human analysis. Here, we propose to develop a pre-trained biomedical image analysis platform that rapidly and accurately identifies diverse cellular targets, and make this technology commercially available as a cloud computer vision service, called Sightologist.aiTM. Our computer vision AI-as-a-service (AIaaS) will be made available to research and clinical end-users through our Pipsqueak AI software and through 3rd party product integrations. To achieve these goals, we will build on our SBIR Phase I progress that developed ML models for biomarker detection, and implement cloud distribution methods to deliver our computer vision service to remote users and applications.
摘要 研究人员和病理学家对生物医学图像的手动分析非常耗时,需要大量的时间 培训,并容易引入偏见和错误。组织样本、培养物或 标本是检测生物特性的基础,包括中央区域内的蛋白质相互作用 神经系统、精子计数、消化系统寄生虫和对病毒感染的免疫反应,如 新冠肺炎。生物标志物分析过程中的无意偏差和注意力限制可能是不良的基础 生物医学研究结果的重复性,并可能给临床诊断带来错误。这些 问题是提供最有益的循证医学的重大障碍,发展 有效的医疗,并促进公众对科学探究的信心。 将计算机视觉应用于细胞目标检测是减少人类偏见的一种有前途的方法, 主观性和错误,限制了研究的重复性,减缓了有效医学的发展 治疗。我们的图像分析软件,称为PinSqueak AITM,以及底层的人工智能(AI) 在我们的NIH SBIR第一阶段奖期间开发的技术显著增加了评分者之间和内部的评分者 多重生物标志物的组织样本分析的可靠性和分析时间的缩短。小不点人工智能是 现已集成到ImageJ/斐济(https://Pipsqueak.ai),),并能够返回数百个 在图像上传后300ms内向用户提供准确的蜂窝目标检测。在过去的6个月里, 小用户数量激增至每月1000多名活跃用户,这表明对计算机的需求很高 提高显微图像量化速度和精度的视觉技术。我们经过预训的ML 模型能够精确地检测多种细胞形态和目标类型 重复性大大超过了人类的分析。在这里,我们建议开发一种经过预培训的生物医学 图像分析平台,快速准确地识别不同的细胞目标,并使 一种商业形式的云计算机视觉服务,称为Sightologist.aiTM。我们的 计算机视觉人工智能即服务(AIaaS)将通过我们的 微不足道的人工智能软件和第三方产品集成。为了实现这些目标,我们将在我们的基础上 SBIR第一阶段的进展是为生物标志物检测开发ML模型,并实施云分发 向远程用户和应用程序提供我们的计算机视觉服务的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John H Harkness其他文献

John H Harkness的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John H Harkness', 18)}}的其他基金

Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 94.85万
  • 项目类别:
Development of an adaptive machine learning platform for automated analysis of biomarkers in biomedical images
开发自适应机器学习平台,用于自动分析生物医学图像中的生物标记物
  • 批准号:
    10483118
  • 财政年份:
    2019
  • 资助金额:
    $ 94.85万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 94.85万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了