Mass Spectrometry-based Global Molecular Approaches and Computational Tools to Determine Phenotypic and Environmental Signatures of Endometriosis
基于质谱的全局分子方法和计算工具来确定子宫内膜异位症的表型和环境特征
基本信息
- 批准号:10699969
- 负责人:
- 金额:$ 38.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAnimal ModelBiological MarkersBiologyBloodCell physiologyCellsChlorinated HydrocarbonsClassificationClinicalClinical DataComplexComputing MethodologiesDataData AnalyticsData SetDiagnosisDiagnosticDimensionsDioxinsDiseaseDisease stratificationEndometrialEnzyme-Linked Immunosorbent AssayEstrogensFatty acid glycerol estersFrequenciesGeneticGoalsHistologicIndividualInfertilityInflammatoryIonsLaparoscopyLaparotomyLesionLinkMachine LearningMapsMass Spectrum AnalysisMethodsModalityMolecularMolecular ProfilingOnset of illnessOperative Surgical ProceduresPainPain DisorderPathway interactionsPatientsPhenotypePlayPolychlorinated BiphenylsProcessProteinsProteomeProteomicsRecurrenceReportingResearchResearch PersonnelRiskRisk EstimateRoleSamplingSerologySerumSeverity of illnessTechniquesTechnologyTestingTherapeutic InterventionTimeTissue SampleTissuesTrainingUterine cavityUterusWomanagedclinical phenotypecommunity engagementcomparison controlcomputerized toolsdata integrationdiagnosis standarddiagnostic biomarkerdiagnostic strategydifferential expressiondisease classificationdisease diagnosisdisease diagnosticdisease phenotypedisorder subtypeeffective therapyendometriosisenvironmental chemicalenvironmental chemical exposureepidemiology studyeutopic endometriumexperienceexperimental studygenetic associationinnovationinterdisciplinary approachketogenticmembermetabolomicsmolecular markermolecular phenotypemultidisciplinarymultiple omicsnovelnovel diagnosticsnovel markerphenotypic dataphthalatespotential biomarkerprecision medicinepredictive signatureprotein biomarkersreproductivesmall moleculesymptomatologysystematic reviewtargeted treatmenttherapeutic targettool
项目摘要
ABSTRACT – PROJECT 2
Approximately 10% of reproductive-aged women are diagnosed with endometriosis, an inflammatory, estrogen-
dependent disorder characterized by endometrial tissue outside the uterus. This is likely an underestimate of the
frequency. In the absence of molecular biomarkers of this disease, the “gold standard” for diagnosis is histologic
confirmation of the lesions via invasive surgical procedures (laparoscopy or laparotomy), which delays diagnosis.
Accordingly, Project 2 will use mass spectrometry (MS)-based, global approaches to compare the proteomes
of endometriotic lesions with eutopic endometrium from patients or women without disease with the goal of
identifying protein biomarkers that enable better stratification of the disease phenotypes. Additionally, we will
apply innovative computational methods to correlate the results with multiple molecular profiles (proteins,
environmental chemicals [ECs] and metabolites) in patient and control sera, which could enable novel diagnostic
strategies. This experimental strategy reflects the fact that endometriosis significantly alters the proteome of the
affected cells. Also, ECs have been associated with the disease. For example, Drs. Giudice and Fisher reported
alterations in the tissue proteome (fat) of women with endometriosis that correlate with EC exposures. With
regard to other small molecules, recent studies suggest shifts in tissue metabolites may manifest in the blood of
endometriosis patients. As such they may be linked to the disease process. Our overall strategy derives from
the fact that MS-based analyses at a global level are transforming investigators' ability to explicate complex
disease phenotypes. In this context, Specific Aim 1 will identify differentially expressed (DE) proteins in lesions,
eutopic samples and sera that are associated with endometriosis using a MS-based approach for relative
quantification. Specific Aim 2 will identify metabolomic and exposomic features in banked serum samples from
endometriosis patients vs. control individuals. Specific Aim 3 will apply machine learning-based approaches to
the -omic datasets generated in this project to define phenotypic molecular signatures of endometriosis that
could aid in disease classification and diagnosis. The major significance of the proposed experiments is that we
are redefining the landscape of endometriosis, using a precision medicine approach. Moreover, our data will
reveal effectors with roles in the heterogeneous clinical manifestations of endometriosis that can be targets for
diagnostic modalities and therapeutic interventions. As shown by the preliminary data, the members of the
Project 2 team have extensive experience with the proposed technologies and computational strategies in other
contexts. Regarding innovation, to our knowledge this is the first time that a multi-dimensional, multi-disciplinary
approach to endometriosis will be pursued by using advanced computational, machine learning-based
unsupervised methods to coalesce high order data sets. We believe the results will enable a predictive, non-
invasive approach to detect endometriosis and reveal potential biomarkers, contributing factors underlying
disease, and therapeutic targets.
摘要 - 项目2
大约10%的生殖妇女被诊断为子宫内膜异位症,一种炎症,雌激素
依赖性疾病以子宫外的子宫内膜组织为特征。这可能是对
频率。在没有该疾病的分子生物标志物的情况下,用于诊断的“金标准”是组织学
通过侵入性外科手术(腹腔镜或剖腹手术)确认病变,这会延迟诊断。
根据,项目2将使用基于质谱(MS)的全局方法来比较蛋白质组
来自患者或没有疾病的妇女的配置子宫内膜的子宫内膜损伤,目的
鉴定蛋白质生物标志物,可以更好地分层疾病表型。此外,我们会的
应用创新的计算方法将结果与多个分子曲线相关联(蛋白质,
患者和对照血清中的环境化学物质[ECS]和代谢产物),这可以实现新颖的诊断
策略。这种实验策略反映了以下事实:子宫内膜异位症显着改变了
受影响的细胞。此外,EC与该疾病有关。例如,博士。 Giudice和Fisher报道
子宫内膜异位症女性组织蛋白质组(脂肪)的改变,与EC暴露有关。和
关于其他小分子,最近的研究表明,组织代谢产物的转移可能体现在
子宫内膜异位症患者。因此,它们可能与疾病过程有关。我们的整体策略来自
在全球层面基于MS的分析的事实正在改变研究者的解释能力
疾病表型。在这种情况下,特定目标1将在病变中识别不同表达的(DE)蛋白,
与子宫内膜异位症相关的配置样品和血清,使用基于MS的方法
定量。特定的目标2将在库的血清样品中识别代谢组和外胚层特征
子宫内膜异位症患者与对照个体。特定目标3将应用基于机器学习的方法
该项目中生成的 - 摩尼克数据集,以定义子宫内膜异位症的表型分子特征
可以帮助疾病分类和诊断。提出的实验的主要意义是我们
使用精确医学方法重新定义子宫内膜异位症的景观。而且,我们的数据将
在子宫内膜异位症的异质临床表现中揭示了作用的作用,这可能是
诊断方式和治疗干预措施。如初步数据所示,
项目2团队在其他的技术和计算策略方面具有丰富的经验
contexts.Neinovation,据我们所知,这是第一次是多维,多学科的
子宫内膜异位症方法将通过使用高级计算,基于机器学习的方法来追求
无监督的方法合并高阶数据集。我们认为结果将使预测性,非
侵入性检测子宫内膜异位症并揭示潜在的生物标志物,造成潜在因素的潜在因素
疾病和治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN J. FISHER其他文献
SUSAN J. FISHER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN J. FISHER', 18)}}的其他基金
Mass Spectrometry-based Global Molecular Approaches and Computational Tools to Determine Phenotypic and Environmental Signatures of Endometriosis
基于质谱的全局分子方法和计算工具来确定子宫内膜异位症的表型和环境特征
- 批准号:
10308249 - 财政年份:2021
- 资助金额:
$ 38.28万 - 项目类别:
Mass Spectrometry-based Global Molecular Approaches and Computational Tools to Determine Phenotypic and Environmental Signatures of Endometriosis
基于质谱的全局分子方法和计算工具来确定子宫内膜异位症的表型和环境特征
- 批准号:
10458759 - 财政年份:2021
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
10329277 - 财政年份:2018
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
10428569 - 财政年份:2018
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
10178054 - 财政年份:2018
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
9750750 - 财政年份:2018
- 资助金额:
$ 38.28万 - 项目类别:
THC effects on human implantation: role of trophoblast CB1
THC 对人体着床的影响:滋养层 CB1 的作用
- 批准号:
9224975 - 财政年份:2017
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
8630145 - 财政年份:2013
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
8739303 - 财政年份:2013
- 资助金额:
$ 38.28万 - 项目类别:
Dissecting gene dysregulation at the maternal-fetal interface in preeclampsia
剖析先兆子痫母胎界面的基因失调
- 批准号:
9094682 - 财政年份:2013
- 资助金额:
$ 38.28万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别: