Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks

使用生物物理约束的深度神经网络对癫痫源进行成像

基本信息

  • 批准号:
    10655833
  • 负责人:
  • 金额:
    $ 64.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary The goal of this project is to develop and validate a novel electrophysiological source imaging (ESI) approach based on biophysically constrained deep neural networks (BioDNN), to significantly improve surgical planning in drug resistant focal epilepsy patients. Epilepsy affects about 70 million people worldwide. For approximately 33% of the 3.4 million Americans with epilepsy, seizures are not controlled by medications alone. Epilepsy surgery is the most viable option for curing drug resistant focal epilepsy, only if seizure sources can be accurately localized and safely removed. There is a clinical need to innovate technological tools for better surgical planning of focal epilepsy. We propose in this project a novel ESI technology based on biophysically constrained deep neural network (BioDNN) to provide accurate, robust, and objective spatio-temporal estimates of the underlying epileptogenic zone (EZ). Of innovation is that the trained neural network, is capable of imaging brain sources without the need to tune the model’s hyper-parameters by an operator for every new instance of data, thus making the technique objective and easy-to-use in clinical settings. Our specific aims are: Aim 1. Establishing and Validating the BioDNN for Imaging Epileptogenic Tissue from EEG Inter-ictal Epileptiform Discharges (IEDs) of Focal Epilepsy Patients. We will establish, optimize and validate the proposed BioDNN for imaging EZ from IEDs in EEG in 200 focal drug resistant epilepsy (DRE) patients, in comparison to clinical “ground truth". Aim 2. Developing and Validating the BioDNN Model for Imaging Epileptogenic Tissue from MEG Inter-ictal Epileptiform Discharges of Focal Epilepsy Patients. We will develop and optimize the BioDNN model for imaging EZ from MEG IEDs and validate the MEG-BioDNN model and compare with the EEG-BioDNN model in 80 focal DRE patients in comparison to clinical “ground truth. Aim 3. Developing and Validating the BioDNN Model for Imaging Epileptogenic Tissue from Ictal EEG of Focal Epilepsy Patients. We will develop the BioDNN for imaging the SOZ from scalp ictal EEG and validate it from high density ictal EEG recordings in 120 focal DRE patients, in comparison to clinical “ground truth”. The successful completion of the proposed research will establish a novel machine learning technology to non-invasively localize and image underlying epileptogenic tissue from interictal and ictal electrophysiological biomarkers. The establishment of such a novel technology promises to significantly improve the precision of intracranial EEG electrodes implantation and aid surgical planning, leading to significant improvement in surgical outcomes, and benefiting numerous drug resistant epilepsy patients. 1
项目摘要 本项目的目标是开发和验证一种新的电生理源成像(ESI)方法 基于生物病理学约束的深度神经网络(BioDNN),显著改善手术规划, 耐药局灶性癫痫患者。癫痫影响着全世界约7000万人。约33% 在340万美国癫痫患者中,癫痫发作并不是单靠药物就能控制的。癫痫手术是 治疗耐药性局灶性癫痫的最可行的选择,只有当癫痫发作源可以准确定位 并安全转移临床上需要创新技术工具,以更好地制定病灶切除术的手术计划。 癫痫我们在这个项目中提出了一种新的ESI技术,该技术基于生物制药学约束的深度神经网络, 网络(BioDNN)提供准确,可靠和客观的时空估计的基础 致痫区(EZ)。创新之处在于,经过训练的神经网络,能够对大脑来源进行成像 而不需要由操作员针对每个新的数据实例来调整模型的超参数,因此 使得该技术客观且易于在临床环境中使用。我们的具体目标是:目标1。建立 验证BioDNN用于从EEG发作间期癫痫样放电(IED)成像癫痫组织 局灶性癫痫患者我们将建立,优化和验证拟议的BioDNN成像EZ, 200例局灶性耐药癫痫(DRE)患者EEG中的IED,与临床“地面实况”进行比较。目标2. 脑磁图发作间期癫痫样发作致痫组织成像BioDNN模型的建立与验证 局灶性癫痫患者的出院。我们将开发和优化BioDNN模型,用于从 MEG-BioDNN模型在80例局灶性DRE中的应用 患者与临床“地面实况”的比较。目标3。开发和验证BioDNN成像模型 局灶性癫痫患者发作期脑电图中的致痫组织我们将开发BioDNN, SOZ从头皮发作脑电图,并验证它从高密度发作脑电图记录在120局灶性DRE患者, 与临床“基本事实”进行比较。成功完成拟议的研究将建立一个新的 利用机器学习技术对发作间期的潜在致痫组织进行非侵入性定位和成像 和发作的电生理学生物标志物。这种新技术的建立有望大大提高 提高颅内EEG电极植入的精度,并辅助手术计划, 手术结果的改善,并使许多耐药癫痫患者受益。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BIN HE其他文献

BIN HE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BIN HE', 18)}}的其他基金

Electrophysiology-Compatible Wearable Transcranial Focused Ultrasound Neuromodulation Array Probes
电生理学兼容的可穿戴经颅聚焦超声神经调制阵列探头
  • 批准号:
    10616201
  • 财政年份:
    2023
  • 资助金额:
    $ 64.4万
  • 项目类别:
Breast cancer virotherapy
乳腺癌病毒治疗
  • 批准号:
    10197539
  • 财政年份:
    2021
  • 资助金额:
    $ 64.4万
  • 项目类别:
Integrative Training in Neural Interfacing
神经接口综合培训
  • 批准号:
    10470095
  • 财政年份:
    2021
  • 资助金额:
    $ 64.4万
  • 项目类别:
Characterization of in vivo neuronal and inter-neuronal responses to transcranial focused ultrasound
体内神经元和神经元间对经颅聚焦超声反应的表征
  • 批准号:
    10337754
  • 财政年份:
    2021
  • 资助金额:
    $ 64.4万
  • 项目类别:
Integrative Training in Neural Interfacing
神经接口综合培训
  • 批准号:
    10641330
  • 财政年份:
    2021
  • 资助金额:
    $ 64.4万
  • 项目类别:
Breast cancer virotherapy
乳腺癌病毒治疗
  • 批准号:
    10358606
  • 财政年份:
    2021
  • 资助金额:
    $ 64.4万
  • 项目类别:
Integrative Training in Neural Interfacing
神经接口综合培训
  • 批准号:
    10204598
  • 财政年份:
    2021
  • 资助金额:
    $ 64.4万
  • 项目类别:
Viral determinants in HSV virulence
HSV 毒力的病毒决定因素
  • 批准号:
    10045324
  • 财政年份:
    2020
  • 资助金额:
    $ 64.4万
  • 项目类别:
Viral determinants in HSV virulence
HSV 毒力的病毒决定因素
  • 批准号:
    10161720
  • 财政年份:
    2020
  • 资助金额:
    $ 64.4万
  • 项目类别:
Viral determinants in HSV virulence
HSV 毒力的病毒决定因素
  • 批准号:
    10393596
  • 财政年份:
    2020
  • 资助金额:
    $ 64.4万
  • 项目类别:

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
  • 批准号:
    EP/Y034694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
  • 批准号:
    2349580
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
  • 批准号:
    2415059
  • 财政年份:
    2024
  • 资助金额:
    $ 64.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了