Developing an artificial intelligence-based mHealth intervention to increase HIV testing in Malaysia

开发基于人工智能的移动医疗干预措施,以增加马来西亚的艾滋病毒检测

基本信息

  • 批准号:
    10662651
  • 负责人:
  • 金额:
    $ 31.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-11 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary HIV testing jumpstarts entry into the HIV prevention and treatment cascade. HIV testing levels, however, are especially low in men who have sex with men (MSM), who increasingly contribute to heightened HIV transmission in the presence of high levels of stigma and discrimination. For high risk MSM, new guidelines recommend frequent HIV testing, ranging from every 3 to 6 months. Yet, HIV testing in MSM often occurs less frequently due to individual (e.g., heightened concerns about risk disclosure), clinic (e.g., confidentiality breaches, and discrimination from healthcare providers) and policy (criminalization of same-sex sexual behaviors) barriers. HIV prevalence in MSM in Malaysia has soared to 21.6% nationally, exceeding 40.9% in Kuala Lumpur. While surveillance surveys of MSM in Malaysia who meet criteria for PrEP suggest that ever tested is 70.3%, past- year tested is 40.9%, and only 9.5% were tested more than 1 time per year, despite extraordinary levels of self- reported risk. Once tested, however, MSM with HIV in Malaysia are likely to be treated with ART and achieve viral suppression, making HIV testing a central focus for HIV prevention and treatment. Innovative strategies that motivate and provide guidance for testing among MSM in Malaysia are therefore urgently needed. Intervening using Information-Motivation-Behavioral Skills (IBM) model is ideally suited to overcome barriers to recommended HIV testing in MSM. Moreover, in settings like Malaysia where the HIV epidemic has transitioned from primarily concentrated in PWID to a volatile epidemic in MSM, theory-guided behavioral change strategies that inform, motivate and provide pragmatic skills to more fully engage in recommended HIV testing are poised to accelerate the HIV prevention and care continuum. Given that there are many individual, clinic and policy barriers to HIV testing, mobile health (mHealth) interventions that reduce “in person” contact and offer a menu of behavioral skills is ideally suited to increase access to MSM in highly stigmatized settings and promote recommended HIV testing. Recent studies in the U.S., China, South Africa, and Peru show that mHealth interventions using smartphones and apps have the potential to increase HIV testing while maintaining MSM’s confidentiality. Such mHealth interventions are feasible and acceptable among MSM, including in Malaysia where most MSM find sexual partners using social-networking apps with similar interfaces and functionalities to the proposed intervention. Current mHealth strategies, however, are limited by their lack of automation and need for high-intensity and sustained human inputs, which restricts their scale-up. Artificial intelligence (AI) using machine learning (ML) may overcome such limitations, but has yet to be applied to mHealth-based HIV testing algorithms. We therefore aim to develop and pilot test an AI-chatbot (R21 phase). Findings from the R21 phase will inform a Type 1 Hybrid Implementation Science trial (R33 phase) to evaluate the efficacy and implementation outcomes of the AI-chatbot for HIV testing relative to treatment as usual.
项目概要 艾滋病毒检测快速启动了艾滋病毒预防和治疗级联。然而,艾滋病毒检测水平 男男性行为者 (MSM) 的比例尤其低,他们日益加剧艾滋病毒传播 存在严重的耻辱和歧视。对于高风险 MSM,新指南建议 经常进行 HIV 检测,每 3 至 6 个月一次。然而,由于 MSM 中的 HIV 检测频率较低, 对个人(例如,对风险披露的高度关注)、诊所(例如,违反保密规定和 来自医疗保健提供者的歧视)和政策(同性性行为的刑事定罪)障碍。艾滋病病毒 马来西亚男男性行为者的患病率已飙升至全国21.6%,超过吉隆坡的40.9%。尽管 对马来西亚符合 PrEP 标准的 MSM 进行的监测调查表明,曾经接受过检测的比例为 70.3%,过去- 尽管自我检测水平极高,但每年测试的比例为 40.9%,只有 9.5% 每年测试超过 1 次。 报告了风险。然而,一旦检测完毕,马来西亚感染艾滋病毒的男男性行为者可能会接受抗逆转录病毒治疗并实现 病毒抑制,使艾滋病毒检测成为艾滋病毒预防和治疗的中心焦点。 因此,激励马来西亚 MSM 进行检测并为其提供指导的创新策略 急需。使用信息-动机-行为技能 (IBM) 模型进行干预非常适合 克服在 MSM 中推荐进行 HIV 检测的障碍。此外,在像马来西亚这样的环境中,艾滋病毒 流行病已从主要集中在吸毒者中转变为在男男性行为者中的不稳定流行,理论指导 行为改变策略,告知、激励和提供务实技能,以更充分地参与 推荐的艾滋病毒检测有望加速艾滋病毒预防和护理的连续性。鉴于有 HIV 检测、移动医疗 (mHealth) 干预措施方面存在许多个人、诊所和政策障碍,这些障碍减少了“ 人”的联系方式并提供一系列行为技能,非常适合在高度发达的地区增加接触 MSM 的机会 污名化环境并推广推荐的艾滋病毒检测。美国、中国、南非的最新研究, 和秘鲁表明,使用智能手机和应用程序的移动医疗干预措施有可能增加艾滋病毒检测 同时维护 MSM 的机密。这种移动医疗干预措施在 MSM 中是可行且可接受的, 包括在马来西亚,大多数 MSM 使用具有类似界面的社交网络应用程序寻找性伴侣 以及拟议干预措施的功能。然而,当前的移动医疗战略因缺乏 自动化以及对高强度和持续人力投入的需求,限制了其规模化。人造的 使用机器学习(ML)的智能(AI)可能会克服这些限制,但尚未应用于 基于移动医疗的 HIV 检测算法。因此,我们的目标是开发和试点测试人工智能聊天机器人(R21 阶段)。 R21 阶段的发现将为 1 型混合实施科学试验(R33 阶段)提供信息,以评估 人工智能聊天机器人在艾滋病毒检测方面相对于常规治疗的功效和实施结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FREDERICK LEWIS ALTICE其他文献

FREDERICK LEWIS ALTICE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FREDERICK LEWIS ALTICE', 18)}}的其他基金

Prison Interventions and HIV Prevention Collaboration
监狱干预和艾滋病毒预防合作
  • 批准号:
    10548569
  • 财政年份:
    2023
  • 资助金额:
    $ 31.33万
  • 项目类别:
Innovations in Implementing Decentralized HIV Services in Peru
秘鲁实施分散式艾滋病毒服务的创新
  • 批准号:
    10762842
  • 财政年份:
    2023
  • 资助金额:
    $ 31.33万
  • 项目类别:
Reducing Stigma in People Who Inject Drugs with HIV Using a Rapid Start Antiretroviral Therapy Intervention
使用快速启动抗逆转录病毒治疗干预措施减少艾滋病毒注射者的耻辱
  • 批准号:
    10756389
  • 财政年份:
    2023
  • 资助金额:
    $ 31.33万
  • 项目类别:
Georgian Implementation Science Fogarty Training Program (GIFT)
格鲁吉亚实施科学福格蒂培训计划 (GIFT)
  • 批准号:
    10688700
  • 财政年份:
    2023
  • 资助金额:
    $ 31.33万
  • 项目类别:
Expanding Medication Assisted Therapies in Central Asia
在中亚扩大药物辅助治疗
  • 批准号:
    10693856
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
Expanding Medication Assisted Therapies in Central Asia
在中亚扩大药物辅助治疗
  • 批准号:
    10403273
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
Integrating Addiction and Infectious Diseases Services into Primary Care in Rural Settings
将成瘾和传染病服务纳入农村地区的初级保健
  • 批准号:
    10670120
  • 财政年份:
    2021
  • 资助金额:
    $ 31.33万
  • 项目类别:
Integrating Addiction and Infectious Diseases Services into Primary Care in Rural Settings
将成瘾和传染病服务纳入农村地区的初级保健
  • 批准号:
    10311425
  • 财政年份:
    2021
  • 资助金额:
    $ 31.33万
  • 项目类别:
Integrating Addiction and Infectious Diseases Services into Primary Care in Rural Settings
将成瘾和传染病服务纳入农村地区的初级保健
  • 批准号:
    10453688
  • 财政年份:
    2021
  • 资助金额:
    $ 31.33万
  • 项目类别:
Malaysian Implementation Science Training (MIST) Program in HIV
马来西亚艾滋病毒实施科学培训(MIST)计划
  • 批准号:
    10358577
  • 财政年份:
    2020
  • 资助金额:
    $ 31.33万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 31.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了