MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
基本信息
- 批准号:10655641
- 负责人:
- 金额:$ 56.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAftercareAmerican College of Radiology Imaging NetworkAnxietyBiologicalBiological AssayBiologyBreastBreast Cancer DetectionBreast Magnetic Resonance ImagingClassificationClinicalClinical DataClinical MarkersCollaborationsDataDatabasesDetectionDevelopmentDiagnosisDiseaseEastern Cooperative Oncology GroupGene ExpressionGenomicsHeterogeneityHistopathologyImageIn Situ LesionIncidenceIndividualInstitutionInterobserver VariabilityInvadedIpsilateralLinkLocal TherapyMRI ScansMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMammographic screeningMammographyMeasuresMedicalModelingMolecularMolecular ProfilingMorbidity - disease rateNewly DiagnosedNoiseNoninfiltrating Intraductal CarcinomaNormal tissue morphologyOncologyOperative Surgical ProceduresOutcomePathologicPathologyPatientsPenetrationPennsylvaniaPerformancePhenotypePhysiciansPrognosisPrognostic FactorProliferatingPublic HealthRadiation therapyRadiosurgeryRecurrenceReproducibilityRiskRisk AssessmentSamplingScienceSemanticsSignal TransductionStagingStandardizationStatistical Data InterpretationSurvival RateSystemic TherapyTestingThickTissue SampleTissuesUniversitiesUnnecessary SurgeryVisualizationWashingtonWomanWorkaggressive therapyangiogenesisbiomarker validationbreast cancer diagnosisbreast imagingcalcificationcancer invasivenessclinical databaseclinical diagnosisclinical prognosticcohortcombatexperiencehealth goalshigh riskhormone therapyimaging biomarkerimprovedindexinginter-institutionalmalignant breast neoplasmmolecular markermultidimensional datanon-invasive imagingnovelnovel strategiesoncotypeopen sourceovertreatmentphenomicsphenotypic dataprognosticprognostic indexprognostic modelradiomicsrisk prediction modelrisk stratificationside effectsoftware developmentstandard of carestatistical centertooltreatment optimizationtumortumor heterogeneitytumor microenvironmentuser-friendly
项目摘要
Abstract/Project Summary: The purpose of this study is to determine whether breast MRI radiomic features
can be utilized to optimize treatment of ductal carcinoma in situ (DCIS), the earliest form of breast cancer
diagnosed. Although DCIS survival rates approach 100%, there is concern that its management generally
results in overtreatment, exposing many of the 50,000 U.S. women diagnosed each year to unnecessary
anxiety and morbidity. The vast majority of DCIS is detected in asymptomatic women in whom suspicious
calcifications are identified on mammography and characterized using limited tissue histopathology.
Unfortunately, conventional imaging and pathology have not proven reliable for distinguishing low vs. high-risk
DCIS. Specifically, it is unclear at diagnosis which forms of DCIS will upstage to invasive disease or have an
ipsilateral breast recurrence (IBR) after treatment. This limited risk-stratification is due in part to inadequate
sampling of the entire DCIS lesion and an inability to account for peritumoral microenvironment features. This
results in unnecessary surgery, radiation therapy, and medical therapy for as many as half of women
diagnosed with DCIS. Breast MRI is commonly and easily performed, able to best depict DCIS span, and can
assess tumor and peritumoral heterogeneity rooted in biological features such as angiogenesis, making it an
appealing choice for a radiomics assay to improve DCIS risk assessments. The Quantitative Breast Imaging
Lab at the University of Washington has shown that quantitative MRI features are associated with DCIS grade,
a molecular marker of recurrence (Oncotype DX DCIS Score), and IBR. The Computational Biomarker Imaging
Group at the University of Pennsylvania has pioneered breast MRI radiomic phenotyping and shown radiomic
measures of breast cancers correlate with genomic features and recurrence. The Center for Statistical
Sciences at Brown University has expertise with radiomics, machine learning, and statistical analyses for
imaging trials from ECOG-ACRIN. In this collaborative application, we hypothesize that breast MRI radiomic
signatures of DCIS will result in distinct phenotypes that are prognostic and can be integrated with
clinical, molecular, and pathologic markers to optimize DCIS treatment. To test this hypothesis, we will
create a multi-institutional database of over 1400 MRIs, including exams from the ECOG-ACRIN E4112 trial,
with curated outcomes (e.g., upstage to invasion, DCIS Score, and IBR). Leveraging a novel approach to
harmonize multicenter data (nested-Combat radiomic feature standardization), we will discover and validate
MRI radiomic phenotypes and assess those phenotypes’ associations with invasive upstaging, Oncotype DX
DCIS Score, and 5- and 10-year IBR. Finally, we will determine whether integration of these phenotypes into
existing clinical prognostic indices (e.g., Van Nuys Prognostic Index) can provide more precise estimates of
IBR. If successful, this study will help clinicians de-escalate DCIS therapy in low-risk patients and address an
important public health goal: decreasing breast cancer overtreatment.
摘要/项目摘要:本研究的目的是确定乳腺MRI放射学特征
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Despina Kontos其他文献
Despina Kontos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Despina Kontos', 18)}}的其他基金
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
- 批准号:
10537149 - 财政年份:2022
- 资助金额:
$ 56.9万 - 项目类别:
Multi-parametric 4-D Imaging Biomarkers for Neoadjuvant Treatment Response
新辅助治疗反应的多参数 4-D 成像生物标志物
- 批准号:
9106459 - 财政年份:2016
- 资助金额:
$ 56.9万 - 项目类别:
Multi-parametric 4-D Imaging Biomarkers for Neoadjuvant Treatment Response
新辅助治疗反应的多参数 4-D 成像生物标志物
- 批准号:
9895669 - 财政年份:2016
- 资助金额:
$ 56.9万 - 项目类别:
Breast tomosynthesis texture-based segmentation for volumetric density estimation
用于体积密度估计的基于乳房断层合成纹理的分割
- 批准号:
8442279 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8303845 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
Breast tomosynthesis texture-based segmentation for volumetric density estimation
用于体积密度估计的基于乳房断层合成纹理的分割
- 批准号:
8248953 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8831453 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8465846 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8643193 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
Digital breast tomosynthesis imaging biomarkers for breast cancer risk estimation
用于乳腺癌风险评估的数字乳腺断层合成成像生物标志物
- 批准号:
9899935 - 财政年份:2012
- 资助金额:
$ 56.9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 56.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 56.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 56.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 56.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




