Center for Restoration of Nervous System Function
神经系统功能恢复中心
基本信息
- 批准号:10663780
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnalgesicsAnimal ModelAstrocytesAxonBiological AssayBurn injuryCarbamazepineCicatrixClinicalClinical ResearchDendritic SpinesDevelopmentDiseaseDrug DesignFamilial diseaseFamilyGenetic ModelsGenetic studyGoalsHumanIn VitroIndividualLeadLinkMolecularMolecular GeneticsMutationNerveNerve FibersNervous System PhysiologyNeuronsNociceptorsOralPainPain DisorderPain managementPathway interactionsPeripheral Nervous System DiseasesPharmacotherapyPhysiologicalPopulationPrecision therapeuticsProteomicsQuality of lifeRehabilitation therapyResearchResolutionRoleRouteSeveritiesSodium ChannelSpinal cord injuryStructureTimeTransgenic AnimalsVariantVeteransVisceral painabuse liabilityaddictionaxon regenerationaxonal degenerationcentral nervous system injurychannel blockerschronic painchronic pain managementgain of function mutationgenetic varianthuman modelimprovedin vivoinduced pluripotent stem cellinhibitorinnovationlimb amputationmembernext generation sequencingnovelnovel therapeutic interventionpain signalpainful neuropathyperipheral painprogramsrepair strategyresiliencerestorationscaffoldscreeningspasticitystem cell modeltraffickingtranslational studytreatment strategy
项目摘要
Rehabilitation, as well as quality of life, in Veterans with nerve and spinal cord injury, traumatic limb amputation,
burn injury, and peripheral neuropathy is severely hampered by chronic pain and spasticity. Current treatments
in many cases are ineffective or partially effective, and can be addictive. Our Center has developed robust
research programs with unique capabilities to develop novel, more effective, and non-addictive treatments for
Veterans with chronic pain and spasticity. Our research has progressed from molecular physiological studies in
vitro and in animal models, to stem cell-derived models such as iPSCs and clinical translational studies, and
from rare human familial disorders that provide genetic models to more common disorders that affect broader
populations. We will now build on this progress in the five major research programs summarized below.
Research Program I: Nav1.7—From Target to Therapy for Pain. We have provided a direct link between
Nav1.7 and human pain disorders, and collaborated with Pfizer and Biogen to advance clinical studies of
orally-bioavailable, Nav1.7-selective blockers for the treatment of neuropathic pain. As a parallel route to new
pain medications, we will also move forward with a large-scale in-house effort to identify the atomic structure of
human Nav1.7 and the molecular determinants of the dual Nav1.7 blocking/gating modifying action of
carbamazepine, which should provide a high-resolution scaffold for rational drug design.
Research Program II: Molecular Genetics of Pain Resilience. We are a worldwide hub for molecular
genetic studies on IEM, a genetic model of human neuropathic pain, in which gain-of-function mutations of
Nav1.7 produce profound hyperexcitability of peripheral pain-signaling DRG neurons that cause pain. We now
plan in-depth study of a family with the Nav1.7-S241T mutation that causes IEM, whose individual members
each manifest pain with distinctly different severity, using an innovative platform of iPSC-derived sensory
neurons, and next-generation sequencing to identify and validate allelic variants that confer pain resilience.
Research Program III: Additional Targets for Pain Pharmacotherapy. Our studies have identified and
validated Nav1.8 and Nav1.9 as additional targets for pain in humans, and have expanded the spectrum of
human neuropathic pain disorders associated with mutations in Na+ channels. We will extend our findings of a
dual action of CBZ as a Na+ channel blocker/gating modifier, from Nav1.7 to Nav1.8 to establish the
generalizability of this novel concept. We will build a proteomics platform to identify channel partners that
regulate trafficking of Nav1.9 within nociceptors, which will advance us toward screening platforms and
enhance understanding of this channel, which has been implicated in both somatic and visceral pain.
Research Program IV: Neuroprotective Strategies in Sodium-Channel Related Peripheral
Neuropathies. We have started to unravel the cellular pathways that contribute to axonal degeneration in
peripheral neuropathies, and have shown that Na+ channel blockers and inhibitors of Na+/Ca2+ exchanger can
rescue degenerating axons in vitro. We will use in vitro functional assays, and in vivo transgenic animal
models, to advance our understanding of the mechanisms by which Nav1.7 channel variants associated with
painful peripheral neuropathy lead to degeneration of axons of DRG neurons, and will assess treatment
strategies with the goal of implementing them in clinical translational studies.
Research Program V: Advancing Toward Translational Studies in SCI. Our Center has provided
substantial evidence for!a strong correlation between dendritic spine dysgenesis and hyperexcitability
disorders associated with SCI, and for a role of sodium channels, especially in astrocytes, in the formation of
glial scars. We will target the Rac1-Pak1 pathway, which we have implicated in dendritic spine dysgenesis, and
also investigate mechanisms that inhibit axonal regeneration, including factors within the glial scar, with the
goal of developing more effective strategies for repair and protection of the injured CNS.
康复,以及生活质量,对于神经和脊髓损伤的退伍军人,创伤性肢体截肢,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sulayman D Dib-Hajj其他文献
Sulayman D Dib-Hajj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sulayman D Dib-Hajj', 18)}}的其他基金
Sodium Channel Nav1.6 in Chemotherapy-Induced Pain
钠通道 Nav1.6 在化疗引起的疼痛中的作用
- 批准号:
10311616 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sodium Channel Nav1.6 in Chemotherapy-Induced Pain
钠通道 Nav1.6 在化疗引起的疼痛中的作用
- 批准号:
10507771 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dynamic regulation of axonal trafficking and surface distribution of Nav1.7 in sensory neurons
感觉神经元轴突运输和 Nav1.7 表面分布的动态调节
- 批准号:
10012510 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery and/or Validation of Pharmacodynamic Markers
药效标记物的发现和/或验证
- 批准号:
10398392 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dynamic regulation of axonal trafficking and surface distribution of Nav1.7 in sensory neurons
感觉神经元轴突运输和 Nav1.7 表面分布的动态调节
- 批准号:
10618775 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dynamic regulation of axonal trafficking and surface distribution of Nav1.7 in sensory neurons
感觉神经元轴突运输和 Nav1.7 表面分布的动态调节
- 批准号:
10293536 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sodium Channel Nav1.6 in Chemotherapy-Induced Pain
钠通道 Nav1.6 在化疗引起的疼痛中的作用
- 批准号:
10700086 - 财政年份:2021
- 资助金额:
-- - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
-- - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
-- - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual