Elucidating microvascular contributions to cognitive impairment at single-cell resolution
在单细胞分辨率下阐明微血管对认知障碍的影响
基本信息
- 批准号:10656541
- 负责人:
- 金额:$ 101.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAccelerationAddressAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAnteriorAreaArteriesArteriolosclerosesAtlasesAutopsyBlood - brain barrier anatomyBlood VesselsBlood capillariesBrainBrain DiseasesBrain PathologyBrain regionCell DensityCell NucleusCell physiologyCellsCerebral small vessel diseaseCerebrovascular CirculationChromatinCognitiveCognitive deficitsComplementDataData SetDementiaDevelopmentDiseaseDisease ProgressionEndotheliumExhibitsFibroblastsFreezingFrontal gyrusFunctional disorderGene ExpressionGene Expression ProfileGenesGenetic RiskGenetic TranscriptionGenomicsHeritabilityHumanImpaired cognitionInfarctionJointsLesionLinkMacrophageMagnetic Resonance ImagingMapsMediatingMemoryMessenger RNAMethodsMolecularMolecular ProfilingNerveNerve DegenerationNeurogliaNutrientOxygenPathologicPathologyPathway interactionsPericytesPersonsPhenotypePopulationProcessQuality ControlQuantitative Trait LociRadiology SpecialtyRegulator GenesResearchResolutionSamplingSmall Nuclear RNAStrokeT-LymphocyteTechniquesTechnologyTissuesVariantVascular Cognitive Impairmentaging populationarteriolecausal variantcell typecerebrovasculardensitydesigneffective therapyepigenomicsinsightinventionmild cognitive impairmentmixed dementiamultimodalitynervous system disorderneuroinflammationpower analysisreligious order studyrisk variantsingle nucleus RNA-sequencingtherapeutic targettractographytranscription factortranscriptomicsvascular risk factorvenule
项目摘要
Project Summary/Abstract
Dementia afflicts over 55 million people worldwide. With an aging population and no effective treatments
available, this number is projected to nearly triple by 2050. Cerebral small vessel disease (CSVD) causes up to
45% of all dementia, accounts for ~20% of strokes, and appears in most Alzheimer’s disease patients. CSVD
arises from pathologies of the brain’s ~400 miles of oxygen and nutrient-delivering small arteries, arterioles,
venules, and capillaries; and is recognized as the most important vascular contributor to cognitive impairment
and dementia (VCID). CSVD pathologies, such as arteriolosclerosis and microinfarcts, develop insidiously to
strangulate cerebral blood flow, compromise the blood-brain barrier, and trigger neuroinflammation. Recent
developments in single-nucleus sequencing technologies have begun elucidating fundamental molecular and
cellular processes underlying human neurological disease. They have revealed selectively vulnerable cell
populations, transcriptional dysfunction across disease stages, and the mechanisms of genetic risk variants to
inform new research areas and therapeutic targets. Yet, single-nucleus studies have mostly lost human brain
vascular cells unknown reasons, leaving our understanding of CSVD lagging. To address this challenge, we
invented Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to efficiently capture human brain
vascular cell types from frozen postmortem brains for single-nucleus profiling. Here, we will combine VINE-seq
with multimodal single-nucleus RNA and ATAC sequencing to generate a first ~1.9 million vascular atlas of
early, mid-, and late-stage CSVD alongside age-matched cognitively normal controls. Samples come from a
specially organized CSVD set of 191 postmortem midfrontal gyrus watershed tissue, prioritized via MRI and
nerve tractography, from the Religious Order Study and Memory and Aging Project (ROSMAP). Samples
exhibit no confounding non-vascular neurodegenerative pathology and are richly annotated with demographic,
genomic, pathologic, and longitudinal cognitive data to link molecular readouts to phenotypes. Thus, we will
combine VINE-seq with multimodal single-nucleus RNA- and ATAC- sequencing (snRNA/ATAC-seq) to
generate a first vascular atlas of CSVD (A1); reveal the molecular signatures of CSVD progression (A2); and
determine the causal mechanisms of CSVD genetic risk (A3). As vascular risk factors are modifiable, insights
revealed here may be critical to understanding and ultimately treating VCID and mixed pathology dementias.
项目总结/摘要
痴呆症困扰着全世界超过5500万人。随着人口老龄化和没有有效的治疗方法
根据现有资料,预计到2050年,这一数字将增加近两倍。脑小血管病(CSVD)可导致
占所有痴呆症的45%,占中风的约20%,并出现在大多数阿尔茨海默病患者中。CSVD
是由大脑400英里长的输送氧气和营养的小动脉,小动脉,
小静脉和毛细血管;被认为是认知障碍的最重要的血管贡献者
痴呆症(VCID)CSVD病理学(例如小动脉硬化和微梗塞)会不知不觉地发展,
抑制脑血流,损害血脑屏障,并引发神经炎症。最近
单核测序技术的发展已经开始阐明基本的分子和
是人类神经疾病的基础他们揭示了选择性脆弱的细胞
人群,疾病阶段的转录功能障碍,以及遗传风险变异的机制,
为新的研究领域和治疗目标提供信息。然而,单细胞核研究大多失去了人类大脑
血管细胞原因不明,使我们对CSVD的认识滞后。为了应对这一挑战,我们
发明了用于测序的血管分离和细胞核提取(VINE-seq),以有效地捕获人脑
从冷冻的死后大脑中提取血管细胞类型用于单核分析。在这里,我们将联合收割机VINE-seq
多模式单核RNA和ATAC测序,以生成第一个约190万个血管图谱,
早期、中期和晚期CSVD以及年龄匹配的认知正常对照。样品来自
专门组织的191个死后额中回分水岭组织的CSVD集,通过MRI进行优先排序,
神经纤维束描记术,来自宗教秩序研究和记忆与衰老项目(ROSMAP)。样品
没有表现出混杂的非血管神经退行性病变,
基因组、病理和纵向认知数据,以将分子读数与表型联系起来。因此,我们将
将联合收割机VINE-seq与多模式单核RNA和ATAC测序(snRNA/ATAC-seq)结合,
显示CSVD进展的分子特征(A2);以及
确定CSVD遗传风险的因果机制(A3)。由于血管风险因素是可以改变的,
这一发现对于理解和最终治疗VCID和混合病理性痴呆可能至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Chris Yang其他文献
Andrew Chris Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Chris Yang', 18)}}的其他基金
Elucidating microvascular contributions to cognitive impairment at single-cell resolution
在单细胞分辨率下阐明微血管对认知障碍的影响
- 批准号:
10514105 - 财政年份:2022
- 资助金额:
$ 101.39万 - 项目类别:
Molecular tools to decipher communication across the blood-brain barrier
破译跨血脑屏障通讯的分子工具
- 批准号:
10704542 - 财政年份:2022
- 资助金额:
$ 101.39万 - 项目类别:
Understanding how human brain vascular cells mediate genetic risk for Alzheimer's disease
了解人脑血管细胞如何介导阿尔茨海默病的遗传风险
- 批准号:
10511135 - 财政年份:2022
- 资助金额:
$ 101.39万 - 项目类别:
Understanding how human brain vascular cells mediate genetic risk for Alzheimer's disease
了解人脑血管细胞如何介导阿尔茨海默病的遗传风险
- 批准号:
10670867 - 财政年份:2022
- 资助金额:
$ 101.39万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 101.39万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 101.39万 - 项目类别:
Standard Grant