Integration of spatiotemporal signaling for pattern formation and scaling
整合时空信号以形成模式和缩放
基本信息
- 批准号:10656503
- 负责人:
- 金额:$ 44.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAddressAnteriorBHLH ProteinBindingCell NucleusCell PolarityCellsCharacteristicsChickClock proteinComplexComputer ModelsCongenital AbnormalityCytoskeletonDataData AnalysesDefectDevelopmentDiffusionDiseaseDynein ATPaseEmbryoEmbryonic DevelopmentEnsureEtiologyFGF17 geneFamilyFibroblast Growth FactorFibroblast Growth Factor ReceptorsFishesFutureGene FamilyGenerationsGenetic TranscriptionHomeostasisImageInvestigationLengthLigandsLongevityMalignant NeoplasmsMeasuresMediatingMesodermMessenger RNAMicrotubule-Organizing CenterMicrotubulesMissionModelingMusMyosin ATPaseNuclearOrganOrganoidsPatternPattern FormationPhosphoric Monoester HydrolasesPhosphorylationPhosphorylation InhibitionPositioning AttributeProcessProteinsReporterRoleRotationSegmentation Clock PathwaySignal TransductionSiteSomitesSourceSyndromeTestingTimeTissuesTranscription RepressorUnited States National Institutes of HealthUpdateVisualizationWorkZebrafishcancer typeexperimental studygenetic regulatory proteinheparin proteoglycaninhibitorloss of functionmalformationmathematical modelmosaic lossnovelreal-time imagessingle moleculespatiotemporalspine bone structure
项目摘要
Abstract
Tissues and organs display characteristic patterns established during embryonic development. Segmentation
of somites, precursors of vertebrae, is a unique example in which spatial patterns are established sequentially
and periodically. The prevailing clock and wavefront (CW) model states that the period of segmentation is set
by the oscillatory expression of the Hes/her gene family (the segmentation clock). Disrupting these oscillations
causes vertebral defects. The CW model further states that the positions of segment boundaries are
determined by a critical readout of a signaling gradient (i.e. the wavefront) in the middle of the presomitic
mesoderm (PSM). Depending on the stage, three to five compartments are predetermined to segment. We
recently developed a novel 3D explant culture of zebrafish PSM and discovered that the FGF-mediated double
phosphorylated ERK (ppERK) gradient is the wavefront. We also showed that in three popular vertebrate
models (fish, chick and mice), anterior somite lengths are uniform but posterior somite lengths scale with the
length of PSM. This scaling phenomenon contributes to the generation of species-specific segment numbers.
Several important questions remain unsolved: 1) What mechanism controls segment length scaling, 2) How
the clock and ppERK gradient are integrated to govern segmentation, and 3) How cells decode the
spatiotemporal information, provided by the clock and ppERK gradient, to commit to segmentation in mid-PSM.
To address these fundamental questions, we will perturb the clock, gradient or cell polarity machinery in a
spatiotemporally-controlled manner, visualize their readouts at the single-cell level, and combine quantitative
data analysis with mathematical modeling to test alternative mechanistic hypotheses: Aim 1: Discover the
mechanism governing pattern size scaling. Aim 2: Discover the mechanism integrating the segmentation clock
with the wavefront. Aim 3: Discover the mechanism decoding spatiotemporal information of the clock and
wavefront. Hes/Her oscillations and FGF/ERK activity control pattern formation in various tissues during
development. Disruption of their activities also result in specific cancer types. Our work might inspire future
investigations on their roles during development of other tissues and how their dysregulations result in birth
defects and cancer. Therefore, this application has strong relevance to the mission of the National Institute of
Health.
抽象的
组织和器官显示在胚胎发育过程中建立的特征模式。分割
椎骨的前体的物种是一个独特的例子,在其中依次建立空间模式
并定期。盛行的时钟和波前(CW)模型指出,设置了分割周期
通过HES/她的基因家族的振荡表达(分割时钟)。破坏这些振荡
导致椎骨缺陷。 CW模型进一步指出,段边界的位置是
由信号传导梯度(即波前)的临界读数确定
中胚层(PSM)。根据阶段,预定了三到五个隔室。我们
最近开发了一种新颖的斑马鱼PSM的3D外植体培养物,发现FGF介导的双重
磷酸化ERK(PPERK)梯度是波前。我们还表明,在三个流行的脊椎动物中
模型(鱼,小鸡和小鼠),前节长度均匀,但后部长度尺寸为
PSM的长度。这种缩放现象有助于物种特异性段数的产生。
几个重要问题仍未解决:1)哪些机制控制段长度缩放,2)
时钟和pperk梯度被整合到控制分段,3)细胞如何解码
时钟和PPERK梯度提供的时空信息,以在PSM中进行分割。
为了解决这些基本问题,我们将在一个时钟,梯度或细胞极性机械上扰动
时空控制的方式,在单细胞水平上可视化其读数,然后结合定量
使用数学建模的数据分析以检验替代机械假设:目标1:发现
控制图案尺寸缩放的机制。目标2:发现整合分段时钟的机制
与波前。目标3:发现时钟时时空信息的机制
波前。 HES/她的振荡和FGF/ERK活性控制模式在各种组织中形成
发展。其活动的破坏也导致特定的癌症类型。我们的工作可能会激发未来
调查其在其他组织开发过程中的作用以及其失调如何导致出生
缺陷和癌症。因此,该申请与国家研究所的使命有很强的意义
健康。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A design logic for sequential segmentation across organisms.
跨生物体顺序分割的设计逻辑。
- DOI:10.1111/febs.16899
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Simsek,MFethullah;Özbudak,ErtuğrulM
- 通讯作者:Özbudak,ErtuğrulM
Patterning principles of morphogen gradients.
- DOI:10.1098/rsob.220224
- 发表时间:2022-10
- 期刊:
- 影响因子:5.8
- 作者:
- 通讯作者:
Spatiotemporal control of pattern formation during somitogenesis.
- DOI:10.1126/sciadv.adk8937
- 发表时间:2024-01-26
- 期刊:
- 影响因子:13.6
- 作者:Mcdaniel, Cassandra;Simsek, M. Fethullah;Chandel, Angad Singh;Ozbudak, Ertugrul M.
- 通讯作者:Ozbudak, Ertugrul M.
Periodic inhibition of Erk activity drives sequential somite segmentation.
- DOI:10.1038/s41586-022-05527-x
- 发表时间:2023-01
- 期刊:
- 影响因子:64.8
- 作者:Simsek, M. Fethullah;Chandel, Angad Singh;Saparov, Didar;Zinani, Oriana Q. H.;Clason, Nicholas;Ozbudak, Ertugrul M.
- 通讯作者:Ozbudak, Ertugrul M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ertugrul M Ozbudak其他文献
Ertugrul M Ozbudak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ertugrul M Ozbudak', 18)}}的其他基金
Integration of spatiotemporal signaling for pattern formation and scaling
整合时空信号以形成模式和缩放
- 批准号:
10489850 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Regulatory Mechanisms Governing Precision in Vertebral Segmentation
控制椎体分割精度的调节机制
- 批准号:
10162773 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Regulatory Mechanisms Governing Precision in Vertebral Segmentation
控制椎体分割精度的调节机制
- 批准号:
10406991 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Regulatory Mechanisms Governing Precision in Vertebral Segmentation
控制椎体分割精度的调节机制
- 批准号:
10584604 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Integration of spatiotemporal signaling for pattern formation and scaling
整合时空信号以形成模式和缩放
- 批准号:
10295895 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Elucidating the Mechanism of Precision in Vertebral Segmentation
阐明椎骨分割的精确机制
- 批准号:
9889967 - 财政年份:2017
- 资助金额:
$ 44.76万 - 项目类别:
Elucidating the Mechanism of Precision in Vertebral Segmentation
阐明椎骨分割的精确机制
- 批准号:
9287967 - 财政年份:2017
- 资助金额:
$ 44.76万 - 项目类别:
Regulatory Mechanisms Governing Vertebral Segmentation
椎骨分割的调节机制
- 批准号:
9316666 - 财政年份:2017
- 资助金额:
$ 44.76万 - 项目类别:
Regulatory Mechanisms Governing Vertebral Segmentation
椎骨分割的调节机制
- 批准号:
8930167 - 财政年份:2014
- 资助金额:
$ 44.76万 - 项目类别:
Regulatory Mechanisms Governing Vertebral Segmentation
椎骨分割的调节机制
- 批准号:
8766216 - 财政年份:2014
- 资助金额:
$ 44.76万 - 项目类别:
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别:
hiPSC Modeling of Restrictive Cardiomyopathy for Drug Testing
用于药物测试的限制性心肌病的 hiPSC 模型
- 批准号:
10716393 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别: