Targeting metabolic stress to induce pancreatic tumor cell death
针对代谢应激诱导胰腺肿瘤细胞死亡
基本信息
- 批准号:10656461
- 负责人:
- 金额:$ 38.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnabolismApoptosisBiological AssayCancer EtiologyCarbonCause of DeathCell DeathCellsCessation of lifeChemicalsClinical TreatmentCysteineCysteine Metabolism PathwayDataDependenceDietDiseaseDrug TargetingEnvironmentEnzymesEquilibriumExhibitsFibroblastsFoundationsGeneticGenetic ModelsGenetic TechniquesGlutamatesGlutathioneGrowthHumanImmunotherapyImpairmentIn VitroIncidenceIronKnock-outLipid PeroxidationMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMediatingMetabolicMetabolic PathwayMetabolic stressMetabolismMethodsModelingMutationNADPNutrientOxaloacetatesOxidation-ReductionPancreasPancreatic Ductal AdenocarcinomaPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPre-Clinical ModelProcessPropertyReactive Oxygen SpeciesRegulationResearch ProposalsResistanceRoleSafetyStressSulfurSurvival RateTechniquesTestingTherapeuticTransaminasesTranslationsTreatment EfficacyUnited Statescancer celleffective therapyexperimental studyextracellularin vivoinhibitorinsightinterestknock-downmetabolomicsmitochondrial metabolismmouse modelnew therapeutic targetnovel therapeutic interventionpancreatic cancer cellspancreatic ductal adenocarcinoma cellpancreatic ductal adenocarcinoma modelpancreatic neoplasmpharmacologicprogramsprotective pathwaystable isotopestressorthree dimensional cell culturetranslational potentialtumortumor growthuptake
项目摘要
ABSTRACT
Pancreatic cancer is a devastating disease with a five-year survival rate below 10%. One of the main factors
underscoring this low survival rate is the lack of effective clinical treatments. Like most cancers, metabolic
processes in pancreatic cancer cells are altered to facilitate macromolecular biosynthesis and protect against
intra and extracellular stressors. Reactive oxygen species (ROS) are a byproduct of metabolism and represent
a notable metabolic stress to pancreatic cancer cells. Previously, we described a new metabolic pathway in
pancreatic cancer, mediated by cytosolic glutamate oxaloacetate transaminase 1 (GOT1), that is used to
manage ROS by facilitating the coordination of cytosolic and mitochondrial metabolism and maintaining
glutathione (GSH) pools.
Ferroptosis is a recently described form of iron-dependent, non-apoptotic cell death caused by lipid
peroxidation and mediated by loss of GSH pools. We found that GOT1 inhibition potentiated the activity of
known ferroptotic agents. Further, we also discovered that GOT1 inhibition can engage ferroptosis when nodes
in cysteine metabolism are inhibited. In this research proposal, we will determine how GOT1 inhibition
promotes ferroptosis. Mechanistic insight from these studies will then be used to selectively target pancreatic
cancers for ferroptotic cell death. This will be accomplished using metabolomics techniques in combination
with genetic and pharmacological inhibitors of metabolism. In parallel, we will test combinations of ferroptotic
agents with GOT1 inhibition in human patient-derived 3D culture models and in orthotopic mouse models to
determine the translation value. Given the safety profile of GOT1 and some ferroptosis-inducers, the profound
sensitivity of this combination in pancreatic cancer cells, and the desperate need for new strategies to treat
pancreatic cancer, there is now a critical need to understand mechanistically what confers sensitivity to these
combinations. Such insights may provide strategies to promote redox imbalance in pancreatic cancer, paving
the way for tumor-selective, ferroptosis-based therapies.
摘要
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer.
- DOI:10.1101/gad.344184.120
- 发表时间:2021-02-01
- 期刊:
- 影响因子:10.5
- 作者:Purohit V;Wang L;Yang H;Li J;Ney GM;Gumkowski ER;Vaidya AJ;Wang A;Bhardwaj A;Zhao E;Dolgalev I;Zamperone A;Abel EV;Magliano MPD;Crawford HC;Diolaiti D;Papagiannakopoulos TY;Lyssiotis CA;Simeone DM
- 通讯作者:Simeone DM
Clinical Targeting of Altered Metabolism in High-Grade Glioma.
- DOI:10.1097/ppo.0000000000000550
- 发表时间:2021-09-01
- 期刊:
- 影响因子:0
- 作者:Scott AJ;Lyssiotis CA;Wahl DR
- 通讯作者:Wahl DR
Metabolic regulation of ferroptosis in the tumor microenvironment.
- DOI:10.1016/j.jbc.2022.101617
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Mbah NE;Lyssiotis CA
- 通讯作者:Lyssiotis CA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Costas Andreas Lyssiotis其他文献
Costas Andreas Lyssiotis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Costas Andreas Lyssiotis', 18)}}的其他基金
Stromal metabolism promotes therapeutic resistance in pancreatic cancer
基质代谢促进胰腺癌的治疗抵抗
- 批准号:
10368125 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Targeting metabolic stress to induce pancreatic tumor cell death
针对代谢应激诱导胰腺肿瘤细胞死亡
- 批准号:
10408692 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Stromal metabolism promotes therapeutic resistance in pancreatic cancer
基质代谢促进胰腺癌的治疗抵抗
- 批准号:
10116342 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Stromal metabolism promotes therapeutic resistance in pancreatic cancer
基质代谢促进胰腺癌的治疗抵抗
- 批准号:
10596979 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Intratumoral Metabolic Crosstalk Promotes Therapeutic Resistance in Pancreatic Cancer
瘤内代谢串扰促进胰腺癌的治疗耐药
- 批准号:
9887919 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
Intratumoral Metabolic Crosstalk Promotes Therapeutic Resistance in Pancreatic Cancer
瘤内代谢串扰促进胰腺癌的治疗耐药
- 批准号:
10543534 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
Intratumoral Metabolic Crosstalk Promotes Therapeutic Resistance in Pancreatic Cancer
瘤内代谢串扰促进胰腺癌的治疗耐药
- 批准号:
10305594 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 38.31万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 38.31万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 38.31万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 38.31万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 38.31万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 38.31万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 38.31万 - 项目类别:
Discovery Early Career Researcher Award