1/4 Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
1/4 利用 EHR 连接的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
基本信息
- 批准号:10657607
- 负责人:
- 金额:$ 26.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnxietyAnxiety DisordersApplied GeneticsArchitectureBig DataClinicClinicalClinical DataCollaborationsComplexComputerized Medical RecordDataData SetDepressive disorderDiseaseEducationElectronic Health RecordEmploymentEnvironmental Risk FactorEpidemiologyEuropean ancestryEvaluationFeeling suicidalFundingGeneral PopulationGeneticGenetic ResearchGenetic RiskGenetic VariationGenotypeGeographyGoalsHealth systemHeritabilityHospitalizationIndividualKnowledgeLinkMachine LearningMajor Depressive DisorderMeasuresMedicalMedical centerMental HealthMental disordersMethodsModelingNatural Language ProcessingNew York CityOutcomeParticipantPatientsPerformancePersonsPhenotypePopulationPopulation HeterogeneityResearchRiskRoleSamplingScoring MethodSiteSubstance Use DisorderSuicide attemptSymptomsTextVariantbiobankcare outcomesclinical careclinical practicecohortcomorbiditycostdeep learningdisorder riskfunctional disabilitygenetic risk factorgenome wide association studygenome-widehealth care service utilizationimprovedinfancyinterestlarge datasetsmortality riskneuropsychiatric disorderpleiotropismpolygenic risk scorepopulation basedpsychiatric comorbiditypsychogeneticsresponserisk predictionrisk stratificationsocial determinantssocial health determinantsstructured datasuicidal behaviortechnique developmenttherapy resistanttraittreatment-resistant depression
项目摘要
PROJECT ABSTRACT
Major depressive disorder (MDD), anxiety disorders, and substance use disorders (SUDs) are common, complex
psychiatric traits that frequently co-occur and are associated with significant functional impairment, increased
healthcare utilization and cost, and higher mortality risk. Not only are these three conditions highly prevalent in
the general population and generate a huge societal burden, but recent studies by our team and others have
shown that shared covariance from common genetic variation significantly contributes to these psychiatric
comorbidities. Large data sets are needed to understand how the multifaceted interplay of genetics, including
polygenic risk scores (PRSs), and social determinants of health factors, such as employment and educational
attainment, can increase the risk of these psychiatric disorders and clinical outcomes, such as multiple
psychiatric hospitalizations. PRSs have shown potential for risk prediction, but the clinical utility of PRSs for
psychiatric conditions is just starting to be explored. Use of Electronic Health Records (EHRs) offers the promise
of large data sets to examine these relationships in cohorts of patients seen in clinical practice. However, the
use of EHRs is in its infancy in the study of psychiatric disorders and their treatment. This study will address
critical knowledge gaps in “genotype-psychiatric phenotype” relationships in large, demographically and
geographically diverse population-based samples derived from EHR-linked biobanks across four medical
centers - Columbia, Cornell, Mayo Clinic and Mount Sinai. Our objectives are to (1) develop improved methods
for EHR phenotyping of MDD, anxiety, and SUDs, and related outcomes based on a data-set of >30 million
EHRs, (2) evaluate associations between PRSs and these conditions, as well as (3) assess the association
between PRSs and outcomes including treatment resistance in MDD and healthcare utilization in patients with
MDD, anxiety and SUD. The PRS analyses will utilize data from biobanks with >50,000 persons with both EHR
and GWAS data. Successful completion of this study will generate new data in improving our understanding of
the clinical utility of PRSs for commonly occurring psychiatric disorders.
项目摘要
重度抑郁障碍(MDD)、焦虑症和物质使用障碍(SODS)是常见的、复杂的
经常同时出现并与严重功能障碍相关的精神特征,增加
医疗保健利用率和成本,以及更高的死亡率风险。这三种情况不仅在
对普通人群造成巨大的社会负担,但我们团队和其他人最近的研究已经
共同遗传变异的共同协方差显著地导致了这些精神疾病
合并症。需要大量的数据集来理解遗传学的多方面相互作用,包括
多基因风险评分和健康因素的社会决定因素,如就业和教育
达到,会增加这些精神障碍的风险和临床结果,如多发性
精神科住院治疗。PRSS已显示出风险预测的潜力,但PRSS在临床上的应用
对精神疾病的研究才刚刚开始。电子健康记录(EHR)的使用带来了希望
在临床实践中看到的患者队列中检查这些关系的大型数据集。然而,
EHR在精神疾病及其治疗研究中的应用尚处于初级阶段。这项研究将解决
在大规模、人口学和人口学研究中“基因-精神病表型”关系的关键知识差距
来自四个医疗机构的EHR连锁生物库的基于地理多样性的人群样本
中心-哥伦比亚大学、康奈尔大学、梅奥诊所和西奈山。我们的目标是(1)开发改进的方法
基于3000万人的数据集,对MDD、焦虑症和SODS的EHR表型和相关结果进行研究
EHR,(2)评估PRSS与这些情况之间的关联,以及(3)评估关联
慢性阻塞性肺疾病患者的PRSS与结果之间的关系,包括治疗耐药性和医疗利用
MDD、焦虑和躯体衰弱。PRS分析将利用来自生物银行的数据,这些数据包括50,000名既有EHR又有EHR的人
和GWAs数据。这项研究的成功完成将产生新的数据,以提高我们对
PRSS治疗常见精神障碍的临床应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph John Mann其他文献
Joseph John Mann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph John Mann', 18)}}的其他基金
A blood-brain-barrier permeable imaging biomarker for microtubules in the brain: A first-in-human clinical trial
大脑微管的血脑屏障可渗透成像生物标志物:首次人体临床试验
- 批准号:
10193563 - 财政年份:2021
- 资助金额:
$ 26.48万 - 项目类别:
Inflammatory, mitochondrial and serotonergic interrelationships in the pathogenesis of major depression
重性抑郁症发病机制中炎症、线粒体和血清素的相互关系
- 批准号:
10364705 - 财政年份:2020
- 资助金额:
$ 26.48万 - 项目类别:
Inflammatory, mitochondrial and serotonergic interrelationships in the pathogenesis of major depression
重性抑郁症发病机制中炎症、线粒体和血清素的相互关系
- 批准号:
10579940 - 财政年份:2020
- 资助金额:
$ 26.48万 - 项目类别:
1/4 Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
1/4 利用 EHR 连接的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10199767 - 财政年份:2019
- 资助金额:
$ 26.48万 - 项目类别:
1/4 Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
1/4 利用 EHR 连接的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10015337 - 财政年份:2019
- 资助金额:
$ 26.48万 - 项目类别:
1/4 Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
1/4 利用 EHR 连接的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10411970 - 财政年份:2019
- 资助金额:
$ 26.48万 - 项目类别:
2/2 - Inflammation and Stress Response in Familial and Nonfamilial Youth Suicidal Behavior
2/2 - 家族和非家族青少年自杀行为中的炎症和压力反应
- 批准号:
10550199 - 财政年份:2015
- 资助金额:
$ 26.48万 - 项目类别:
2/2 - Familial Early-Onset Suicide Attempt Biomarkers
2/2 - 家族性早发性自杀企图生物标志物
- 批准号:
8967768 - 财政年份:2015
- 资助金额:
$ 26.48万 - 项目类别:
2/2 - Familial Early-Onset Suicide Attempt Biomarkers
2/2 - 家族性早发性自杀企图生物标志物
- 批准号:
9131809 - 财政年份:2015
- 资助金额:
$ 26.48万 - 项目类别:
2/2 - Inflammation and Stress Response in Familial and Nonfamilial Youth Suicidal Behavior
2/2 - 家族和非家族青少年自杀行为中的炎症和压力反应
- 批准号:
10364001 - 财政年份:2015
- 资助金额:
$ 26.48万 - 项目类别:
相似海外基金
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Launchpad
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Understanding the Effects of Adolescent Nicotine Exposure on Increased Risk for Mood and Anxiety Disorders: Bridging the Gap from Pre-Clinical to Clinical Investigations
了解青少年尼古丁暴露对情绪和焦虑障碍风险增加的影响:弥合临床前研究与临床研究之间的差距
- 批准号:
478121 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Operating Grants
Addressing perinatal mood and anxiety disorders (PMADs) through a doula intervention
通过导乐干预解决围产期情绪和焦虑障碍 (PMAD)
- 批准号:
10861961 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Evaluation of the effectiveness and implementation of online group cognitive behavioral therapy for perinatal women with anxiety disorders.
评估在线团体认知行为治疗对患有焦虑症的围产期妇女的有效性和实施情况。
- 批准号:
22KJ3164 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the error-related negativity and the balance N1 in children with anxiety disorders
调查焦虑症儿童的错误相关消极性和平衡 N1
- 批准号:
10685283 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
RESONY: Digital therapeutic to manage anxiety disorders
RESONY:管理焦虑症的数字疗法
- 批准号:
10042996 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Grant for R&D
Augmenting the Efficacy of Benzodiazepine Taper with Telehealth-Delivered Cognitive Behavioral Therapy for Anxiety Disorders in Patients Using Prescription Opioids
通过远程医疗提供的认知行为疗法来增强苯二氮卓类药物逐渐减少的疗效,以治疗使用处方阿片类药物的焦虑症患者
- 批准号:
10705005 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Developing an adjunctive mobile application for co-morbid substance use and anxiety disorders: comprehensive user experience testing of the Unwinding Anxiety application
开发针对共病药物使用和焦虑症的辅助移动应用程序:Unwinding Anxiety 应用程序的综合用户体验测试
- 批准号:
10597521 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Investigating the role of neuroinflammation in environmental exposure-induced anxiety disorders
研究神经炎症在环境暴露诱发的焦虑症中的作用
- 批准号:
10573948 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别: