Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
基本信息
- 批准号:10659842
- 负责人:
- 金额:$ 52.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-24 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAddressAdoptedAlgorithmsAnatomyAreaArticular Range of MotionArtificial IntelligenceBiometryClinicalClinical DataCollimatorCompensationDataDevelopmentDoseEnsureGeometryImageImplantInferiorInhalationInterdisciplinary StudyLinear Accelerator Radiotherapy SystemsLiverLocationLungMalignant neoplasm of lungMasksMedicalMethodsModernizationMonitorMonte Carlo MethodMotionNormal tissue morphologyOrganPancreasPatientsPerformancePhotonsPhysiciansPhysicsPlant LeavesRadiationRadiation Dose UnitRadiation OncologyRadiation therapyReproducibilityRespirationRiskSiteSupervisionSystemTechniquesTechnologyTestingThree-Dimensional ImageTimeTissuesTreatment outcomeTreatment-related toxicityTumor VolumeUncertaintyX-Ray Computed TomographyX-Ray Medical Imagingautomated segmentationcancer radiation therapycancer sitecancer therapyclinical applicationclinical practiceconvolutional neural networkcostcost effective treatmentdeep learningdosimetryfallsgenerative adversarial networkimaging Segmentationimprovedinnovationlong short term memorymigrationnovelpatient safetyradiation deliveryrespiratorysimulationsuccesstumortumor eradication
项目摘要
Project Summary/Abstract
Stereotactic body radiation therapy (SBRT) is one of the most effective, well-tolerated, and cost-effective
treatments. The success of SBRT relies heavily on the precision of dose delivery, due to the typically small tumor
size, the very high radiation dose per fraction, and the sharp dose fall-off outside the target. For those sites
where the tumor moves due to respiration, motion management is indispensable to ensure the high-precision
dose delivery of SBRT. Current motion management strategies are either treating a large area encompassing
the tumor motion range, or only delivering radiation dose within a small window (e.g., a gating window or at the
end of inhale) of tumor motion cycle via indirect and inferior tumor motion monitoring (such as external surrogates
or implanted fiducial markers). In-treatment real-time volumetric imaging is highly desired to enable direct,
accurate, and markerless 3D tumor tracking for better motion management and capture unexpected large tumor
motion for patient safety. The availability and accuracy of in-treatment real-time patient 3D anatomy information
is also essential to the development of more active and advanced motion management technologies, such as
multileaf collimator tracking and 4D treatment delivery. The unpredictable motion change during treatment can
lead to substantial deviation of the delivered dose from the planned dose. Adaptive radiotherapy can compensate
for the dosimetric errors by adapting the subsequent fractions. However, due to the notable changes of
respiration, the pre-treatment imaging cannot provide the patient’s actual in-treatment anatomy to assess the
actual delivered dose for adaptive radiotherapy. In-treatment real-time volumetric imaging is needed to enable
dose-guided adaptive SBRT. Despite these strong needs, real-time volumetric imaging is not currently available
due to the big challenge of reconstructing an instantaneous 3D image from very few 2D projections to meet the
real-time requirement. To fill this clinical gap, we plan to develop a real-time volumetric imaging-based tumor
tracking and dose verification (RITD) system using novel techniques in deep learning, imaging, Monte Carlo
simulation and high-performance computation, and use lung SBRT treatment as a testbed. We will accomplish
the following specific aims: 1) To develop and refine a real-time on-board volumetric imaging and tumor tracking
method; 2) To develop an image correction method and a tumor/multi-organ segmentation method on the
volumetric images; 3) To evaluate the performance of the proposed RITD system and assess its clinical benefit.
The innovation of this study lies in developing new deep-learning approaches to enable real-time on-board
volumetric imaging and build accurate tumor tracking and dose verification capability into cancer radiotherapy.
It has substantial potential to improve lung SBRT treatment outcomes by reducing targeting uncertainty,
improving treatment accuracy and precision, and enabling dose-guided adaptive lung SBRT. It paves the way
for more active and advanced motion management (e.g., truly 4D radiotherapy). The proposed RITD system
may be adapted for other cancer sites; thus, it has far-reaching clinical potential.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Tian其他文献
Zhen Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Tian', 18)}}的其他基金
Artificial Intelligence Driven Automatic Treatment Planning of Stereotactic Radiosurgery for the Management of Multiple Brain Metastases
人工智能驱动的立体定向放射外科治疗多发性脑转移瘤自动治疗计划
- 批准号:
10501864 - 财政年份:2022
- 资助金额:
$ 52.64万 - 项目类别:
相似海外基金
Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
- 批准号:
2745747 - 财政年份:2022
- 资助金额:
$ 52.64万 - 项目类别:
Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
- 批准号:
10008166 - 财政年份:2018
- 资助金额:
$ 52.64万 - 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
$ 52.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
- 批准号:
1922800 - 财政年份:2017
- 资助金额:
$ 52.64万 - 项目类别:
Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P013309/1 - 财政年份:2017
- 资助金额:
$ 52.64万 - 项目类别:
Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P012434/1 - 财政年份:2017
- 资助金额:
$ 52.64万 - 项目类别:
Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
- 批准号:
16K12096 - 财政年份:2016
- 资助金额:
$ 52.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
- 批准号:
16K00715 - 财政年份:2016
- 资助金额:
$ 52.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2015
- 资助金额:
$ 52.64万 - 项目类别:
Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2014
- 资助金额:
$ 52.64万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




