Artificial Intelligence Driven Automatic Treatment Planning of Stereotactic Radiosurgery for the Management of Multiple Brain Metastases
人工智能驱动的立体定向放射外科治疗多发性脑转移瘤自动治疗计划
基本信息
- 批准号:10501864
- 负责人:
- 金额:$ 36.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectArtificial IntelligenceArtsBedsBrainCancer PatientCaringClinicalClinical ResearchClinical TrialsCognitionCommunicationComputer Vision SystemsConsultationsCustomDecision MakingDevelopmentDevicesDiseaseDoseEffectivenessEvaluationExcisionFeedbackFoundationsGamma Knife RadiosurgeryGuidelinesHourHumanIntelligenceLearningLifeLocationMalignant NeoplasmsManualsMathematicsMedical DeviceMedicineMetastatic malignant neoplasm to brainMethodsModernizationNational Comprehensive Cancer NetworkNeurocognitionNeurocognitive DeficitNormal tissue morphologyOperative Surgical ProceduresOrganOutcomePancreasPatient CarePatientsPhysiciansPoliciesProcessProspective StudiesProstatePsychological reinforcementRadiation therapyRadiosurgeryReportingResource-limited settingRewardsRoboticsSafetySystemSystems IntegrationTechnologyTestingTimeTreatment outcomeValidationVariantbasecancer radiation therapydeep learningdeep neural networkdeep reinforcement learningdesignimprovedindividual patientinnovationknowledge basepalliativepatient prognosispreferenceprospectiveprototypesatisfactionskillsstandard of caretechnology developmenttreatment planningtumor
项目摘要
Project Summary/Abstract
Brain metastases (BMs) are a life-threatening disease, occurring in up to 40% of cancer patients. About 40% of
BM patients have multiple (≥4) BMs (mBMs). Whole brain radiotherapy (WBRT), which has long been the
standard of care for mBMs patients, has shown pronounced impairment of neurocognitive functions. Stereotactic
radiosurgery (SRS) has improved tumor control and reduced negative effect on cognition function, compared to
WBRT. However, it has been historically reserved only for patients with <4 BMs. Recently, several clinical trials
reported strong evidence to support SRS for mBMs patients. National Comprehensive Cancer Network
guidelines hence no longer restrict the number of BMs for SRS. However, the larger BM number in mBMs
patients substantially increases the complexity of treatment planning. Conventional manual forward planning to
manually determine plan parameters becomes cumbersome and impractical for mBMs. Modern inverse planning
methods can determine plan parameters by solving an optimization problem that is composed of multiple
objectives designed for various clinical or practical considerations, while the priorities among these objectives
affect the resulting plan quality. The physician’s preferences for a particular patient can hardly be quantified and
precisely conveyed to the planner, especially for mBMs patients due to the varying number, size, and locations
of BMs. Hence, the best physician-preferred plan is often achieved through extensive trial-and-error priority
tuning and several rounds of interactions between the planner and physician. Consequently, planning time can
take up to hours, and plan quality may be suboptimal and can vary significantly, due to the varying levels of
physician and planner’s skills and physician-planner communication and cooperation, leading to deteriorated
clinical outcome. Inspired by the recent colossal advancements of artificial intelligence (AI), particularly deep
reinforcement learning (DRL) and deep inverse reinforcement learning (DIRL), on intelligent decision-making in
computer visions and robotics, we propose to develop an artificial intelligence driven automatic SRS treatment
planning system for effective management of mBMs (Aid-mBMs), learning a human-level intelligence on
treatment planning from human experts. We envision the system to have two deep neural networks: DNN-R that
acts as an AI-physician to predict the physician’s preferences for each individual patient, and DNN-P that acts
as an AI-planner to tune the priorities to achieve a plan of physician’s satisfaction. We will pursue two specific
aims. Aim 1. System prototype development: We will collect human expert planners’ priority-tuning actions and
develop DNN-R and DNN-P via interleaved DIRL-based reward function learning and DRL-based policy learning.
Aim 2. System improvement and end-to-end evaluation: We will perform a prospective study to improve our
system based on human expert’s further fine-tuning actions on the generated AI plans, and then evaluate the
feasibility, effectiveness, and efficiency of our system. Upon completion, Aid-mBMs will provide high-quality and
efficient SRS treatment planning to benefit mBMs patients, especially those in resource-limited regions.
项目摘要/摘要
脑转移瘤(BMS)是一种危及生命的疾病,发生在高达40%的癌症患者中。约40%的
BM患者有多个(≥4)骨髓基质(MBMS)。全脑放射治疗(WBRT)长期以来一直是
MBMS患者的护理标准显示出明显的神经认知功能障碍。立体定向
放射外科(SRS)改善了肿瘤控制,减少了对认知功能的负面影响
WBRT。然而,历史上它只为患有<;4BMS的患者保留。最近,几项临床试验
报告了强有力的证据支持MBMS患者的SRS。国家综合癌症网络
因此,指导方针不再限制SR的BMS数量。然而,MBMS中较大的黑石数量
患者大大增加了治疗计划的复杂性。传统的人工提前计划
对于MBMS来说,手动确定计划参数变得繁琐且不切实际。现代逆向规划
方法可以通过求解由多个
为各种临床或实际考虑而设计的目标,而这些目标中的优先事项
影响生成的计划质量。医生对特定病人的偏好很难量化,而且
准确地传达给计划者,特别是对于MBMS患者,因为数量、大小和位置不同
BMS的成员。因此,最好的医生偏好计划通常是通过广泛的反复试验优先实现的
调整以及规划者和医生之间的几轮互动。因此,计划时间可以
耗时长达数小时,计划质量可能不是最优的,并且可能会有很大差异,这是由于
医生和规划师的技能和医生与规划师的沟通和合作,导致恶化
临床结果。受到人工智能(AI)最近的巨大进步的启发,尤其是深刻的
强化学习(DRL)和深度逆强化学习(DIRL)在智能决策中的应用
在计算机视觉和机器人技术的基础上,我们提出开发一种人工智能驱动的SRS自动治疗系统
有效管理MBMS的计划系统(Assistant-MBMS),学习人级智能
来自人类专家的治疗计划。我们设想该系统具有两个深度神经网络:DNN-R,即
充当人工智能医生,预测医生对每个患者的偏好,并充当DNN-P
作为人工智能规划者,调整优先事项,以实现医生满意的计划。我们将追求两个具体的目标
目标。目标1.系统原型开发:我们将收集人类专家规划者的优先级调整行动和
通过基于交错DIRL的奖励函数学习和基于DRL的策略学习来开发DNN-R和DNN-P。
目标2.系统改进和端到端评估:我们将进行前瞻性研究,以改进我们的
系统基于人类专家对生成的人工智能计划的进一步微调操作,然后评估
我们的系统的可行性、有效性和效率。完成后,援助-MBMS将提供高质量和
有效的SRS治疗计划,使MBMS患者受益,特别是资源有限地区的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Tian其他文献
Zhen Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Tian', 18)}}的其他基金
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Studentship