Regulation of Cell Cycle progression by the nuclear envelope

核膜对细胞周期进程的调节

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Under physiological conditions, cells are subjected to mechanical tension that triggers multiple signaling pathways and impacts numerous cellular processes, including cell cycle progression. It is well established that a dysfunction of these tension-sensitive signaling pathways can cause unbalanced proliferation and pathological tissue remodeling; however, the precise molecular pathways remain poorly defined. As cells experience tension, the nucleus undergoes significant morphological changes due to its connection with the cytoskeleton that transmits mechanical force to the nuclear envelope. We recently showed that nuclear flattening activates transcription factors that stimulate G1/S transition, leading us to hypothesize that the nuclear membrane could serve as a tension sensor whose activation is necessary for cell cycle progression. Building on these findings, as well as on the work of others, we will test this hypothesis by applying a combination of biophysics, imaging, and biochemical approaches to define the nuclear tension-sensitive pathways that control cell cycle progression. In Aim #1, we will determine whether RhoA-mediated pathways increase actomyosin contractility and nuclear envelope tension during G1 to stimulate G1/S transition. In Aim#2, we will extend our investigation to the signaling triggered in response to an increase in nuclear tension and we will define how these signaling events promote entry into S phase. In Aim#3, we will determine whether tension transmitted to the nucleus during interphase stimulates mitosis progression. We anticipate that the successful completion of this project will increase our understanding of the tension-sensitive mechanisms controlling cell cycle progression and will identify new pharmacological targets to limit cell proliferation in pathological contexts associated with excessive actomyosin tension.
项目摘要/摘要 在生理条件下,细胞受到机械张力,从而触发多种信号。 途径和影响众多的细胞过程,包括细胞周期进程。众所周知, 这些张力敏感信号通路的功能障碍可导致不平衡的增殖和病理 组织重塑;然而,确切的分子途径仍然不清楚。当细胞经历紧张时, 由于其与细胞骨架的连接,细胞核经历了显著的形态变化 将机械力传递到核包层。我们最近证明,核扁平化可以激活 刺激G1/S转变的转录因子,导致我们假设核膜可以 作为张力传感器,其激活是细胞周期进程所必需的。基于这些发现, 以及其他人的工作,我们将通过应用生物物理学、成像、 以及生物化学方法来定义控制细胞周期进程的核张力敏感途径。 在目标1中,我们将确定RhoA介导的通路是否增加肌球蛋白的收缩能力和核 G1期间的包膜张力刺激G1/S的过渡。在目标2中,我们将把我们的调查扩展到 响应核紧张增加而触发的信号,我们将定义这些信号事件是如何 推动进入S阶段。在目标3中,我们将确定张力是否传递到原子核 间期刺激有丝分裂进程。我们预计,这一项目的成功完成将 加深我们对控制细胞周期进程和意志的张力敏感机制的理解 确定新的药物靶点以限制与过量相关的病理背景下的细胞增殖 肌动球蛋白张力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christophe Daniel Guilluy其他文献

Christophe Daniel Guilluy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了