Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
基本信息
- 批准号:10660234
- 负责人:
- 金额:$ 38.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectBioconductorBioinformaticsCOVID-19COVID-19 patientCardiovascular DiseasesCessation of lifeCharacteristicsClinicalCodeCollaborationsCommunitiesCompanionsComplexComputer softwareComputing MethodologiesCritical IllnessDataData AnalysesDiabetes MellitusDiseaseDisease ProgressionEcosystemEnvironmental ExposureFutureGalaxyGenesGeneticGenetic ModelsGenetic VariationGrowthHealthHigh-Throughput Nucleotide SequencingHumanHuman CharacteristicsHuman MicrobiomeInfantInflammatory Bowel DiseasesLinkLongitudinal StudiesMalignant NeoplasmsMechanical ventilationMediatingMetagenomicsMethodsMicrobeNatureNew YorkObesityOrganOutcomePathway interactionsPerformancePhenotypePhylogenetic AnalysisPopulation GeneticsProcessPropertyResearch DesignResearch MethodologyResearch PersonnelRiskRoleSamplingSchemeSourceStatistical ModelsStructureSystemSystems AnalysisTaxonomyTechniquesTechnologyTimeTreesUniversitiesVariantWorkanalytical methodanalytical toolbacterial communitybioinformatics toolcohortdesigndisorder riskexperiencegene functiongenetic variantgenome-wideholistic approachhuman microbiotaimprovedinnovationinsightmetagenomic sequencingmicrobialmicrobiomemicrobiome analysismicrobiome researchmicrobiome signaturemultidisciplinarynovelnovel strategiesnovel therapeuticsopen sourcepopulation basedpreventrepositoryrespiratory microbiomerisk predictionsoftware developmenttooltraitweb based interface
项目摘要
With the steady growth of longitudinal microbiome studies, microbiomes are now on the cusp of clinical utility for
several diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Motivated by the PI’s
broad microbiome collaborations at New York University Langone Health and building upon our extensive and
rich experience in developing novel methods to analyze emerging omics data, we propose to develop two sets
of novel analytic methods to address two computational and analytical challenges in pushing microbiome
research to reach its full clinical potential. In Aim 1, we will take a granular approach to dive into the raw
metagenomics sequencing data and investigate how to analytically detect and differentiate closely related
microbial strains within species. Specifically, we hypothesize that utilizing longitudinal raw metagenomics
sequencing data will produce a more efficient and accurate genetic variants calling scheme than existing
approaches, and we will develop a novel longitudinal metagenomics sequencing processing system to capture
genomic variants, identify primary and secondary strains, and quantify strain proportions within species. The
proposed new tool will be further used to understand how the microbial strains evolve along the time and how to
link the structure variations with host-specific traits. In Aim 2, starting from the recognition of the human
microbiota as a complex ecosystem, we will take a holistic approach to develop a suite of microbial risk scores
to capture the multifaceted characteristics of the microbiome and implement these scores in disease risk
prediction in combination with other omics data. In Aim 3, we will apply the proposed pipelines to two finished
longitudinal microbiome studies and five on-going large scale population-based cancer microbiome studies.
Through the extensive real data analyses, we will validate the proposed methods, illustrate new applications,
and explore future directions. In addition, we will develop, distribute to the community, and provide support for
open-source software packages implementing these methods. The proposal is innovative because it integrates
the overall study design, upstream bioinformatics raw sequencing processing techniques and downstream
statistical modeling with clinical outcomes into a streamlined analytic process to produce unbiased and efficient
analytic tools for microbiome research in longitudinal studies. The proposed work will be conducted by an
experienced multidisciplinary study team. If this work succeeds, it will facilitate the understanding of how bacterial
communities affect human health and disease, and ultimately lead to new approaches to treat or prevent a variety
of health conditions.
随着纵向微生物组研究的稳步增长,微生物组现在正处于临床应用的风口浪尖,
几种疾病,包括肥胖症、糖尿病、炎症性肠病和癌症。在PI的推动下,
广泛的微生物组合作在纽约大学Langone健康和建设我们的广泛和
在开发新方法来分析新兴组学数据方面有丰富的经验,我们建议开发两套
新的分析方法,以解决两个计算和分析的挑战,推动微生物组
以充分发挥其临床潜力。在目标1中,我们将采用细粒度的方法深入研究
宏基因组测序数据并研究如何分析检测和区分密切相关的
微生物菌种。具体来说,我们假设利用纵向原始宏基因组学
测序数据将产生比现有的更有效和更准确的遗传变异识别方案。
方法,我们将开发一种新的纵向宏基因组测序处理系统,以捕获
基因组变异,识别主要和次要菌株,并量化物种内的菌株比例。的
提出的新工具将进一步用于了解微生物菌株如何沿着时间演变,以及如何
将结构变异与宿主特异性性状联系起来。在目标2中,从人类的识别开始,
微生物群作为一个复杂的生态系统,我们将采取全面的方法来开发一套微生物风险评分
捕捉微生物组的多方面特征,并在疾病风险中实施这些评分
预测与其他组学数据相结合。在目标3中,我们将建议的管道应用于两个已完成的
纵向微生物组研究和五项正在进行的大规模基于人群的癌症微生物组研究。
通过广泛的真实的数据分析,我们将验证所提出的方法,说明新的应用,
探索未来的方向。此外,我们将开发、分发给社区,并为以下方面提供支持:
实现这些方法的开源软件包。该提案具有创新性,因为它整合了
总体研究设计,上游生物信息学原始测序处理技术和下游
将临床结果的统计建模转化为简化的分析过程,
纵向研究中微生物组研究的分析工具。拟议的工作将由一名
经验丰富的多学科研究团队。如果这项工作成功,它将有助于理解细菌如何在体内生长。
社区影响人类健康和疾病,并最终导致新的方法来治疗或预防各种
健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huilin Li其他文献
Huilin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huilin Li', 18)}}的其他基金
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10521596 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10662534 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
The structure and function of eukaryotic protein glycosylation enzymes
真核蛋白质糖基化酶的结构和功能
- 批准号:
10412104 - 财政年份:2018
- 资助金额:
$ 38.14万 - 项目类别:
Molecular mechanisms of protein glycosylation and trafficking
蛋白质糖基化和运输的分子机制
- 批准号:
10655796 - 财政年份:2018
- 资助金额:
$ 38.14万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists