High-throughput cellular genetics to connect noncoding variants to coronary artery disease genes
高通量细胞遗传学将非编码变异与冠状动脉疾病基因连接起来
基本信息
- 批准号:10659996
- 负责人:
- 金额:$ 68.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAtherosclerosisBiologicalBiological AssayBlood PressureBlood VesselsCardiovascular systemCause of DeathCell physiologyCellsCellular AssayCellular MorphologyCessation of lifeCholesterolChromosome MappingComplexComputing MethodologiesCoronary ArteriosclerosisDataData SetDevelopmentDiseaseDistalEndothelial CellsEndothelin-1EnhancersGenesGeneticGenetic DiseasesGenetic TranscriptionGenetic studyGoalsGuide RNAHeritabilityHumanHyperlipidemiaHypertensionInflammatoryLinkMapsMeasuresMethodologyMethodsMolecularMorphologyPaintPathway interactionsPhenotypePhysiologicalProcessRestRiskSignal PathwayStimulusTechnologyTestingTimeUnited StatesUntranslated RNAVariantVascular Endothelial CellVasoconstrictor AgentsWorkbiological adaptation to stressblood pressure controlcausal variantcell typecomputational pipelinescytokinedata integrationdisorder riskeffective therapyepigenomicsexperimental studygenetic variantgenome wide association studygenomic locushuman diseasein situ sequencinginsightinventionnoveloxidized low density lipoproteinpreventprogramsshear stresstranscriptometranscriptomics
项目摘要
ABSTRACT
Despite effective therapies to control blood pressure and cholesterol, coronary artery disease (CAD) remains
the leading cause of death in the United States and the world. Recent genome-wide association studies (GWAS)
have identified >200 genetic loci significantly associated with CAD. The majority of these loci are not associated
with hypertension or hyperlipidemia, but contain genes expressed in vascular cells, suggesting the presence of
undiscovered CAD disease mechanisms operating through cells of the blood vessel wall. Identifying the biologic
mechanisms of these loci is difficult because most of the common variants associated with CAD are non-coding,
likely functioning through enhancers that can regulate multiple genes at great distances, and be highly cell-type
specific. This has slowed discovery, so that only a few such loci have been ‘solved’, preventing the realization of
the full potential of genetic studies for the development of much needed new classes of therapies for CAD.
What is needed are much higher-throughput, unbiased methods to systematically dissect these loci, to identify
molecular and cellular mechanisms of disease. To accomplish this goal, we have developed and validated two
novel high-throughput approaches with the ability to quantify the molecular and morphological effects of
thousands of genes in CAD loci: optimized Perturb-seq (to link genes to transcriptional phenotypes) and pooled
perturbation Cell Painting (to link genes to morphological effects).
We propose to use these technologies, together with new and novel computational approaches, to: 1) analyze
the transcriptomic effects of perturbing CAD-locus genes in vascular endothelial cells (ECs) subjected to four
stimuli associated with atherosclerosis, 2) quantify the morphological effects of perturbing all CAD-locus genes
in ECs, 3) integrate these data with epigenomic and genetic data to nominate causal genes and build hypotheses
connecting variants to genes, and genes to disease-associated cellular phenotypes, and then test the top 5 of
each of these hypotheses using variant-editing and EC-functional assays. This includes several prioritized causal
variant hypotheses that regulate EC shear stress response upstream of KLF2 expression.
The completion of these studies will accelerate understanding of the links between CAD genetics and disease,
and provide insights into EC functions in CAD that may inform the development of new classes of therapies.
More broadly, this study will establish new scalable experimental and computational methods to link noncoding
disease variants to genes and cellular phenotypes, which could dramatically accelerate variant-to-function
studies for cardiovascular and other common diseases.
摘要
尽管有有效的治疗方法来控制血压和胆固醇,冠状动脉疾病(CAD)仍然是
是美国和全世界的主要死因最近的全基因组关联研究(GWAS)
已经确定了超过200个与CAD显著相关的遗传位点。这些基因座中的大多数与
与高血压或高脂血症,但含有基因表达的血管细胞,表明存在的
未发现的CAD疾病机制通过血管壁细胞起作用。识别生物
这些基因座的机制是困难的,因为大多数与CAD相关的常见变体是非编码的,
很可能通过增强子发挥作用,增强子可以远距离调节多个基因,并且是高度细胞型的。
特定.这减缓了发现的速度,因此只有少数这样的基因座被“解决”,阻止了实现
遗传学研究在开发急需的CAD新疗法方面的全部潜力。
我们需要的是更高通量、无偏见的方法来系统地剖析这些基因座,
疾病的分子和细胞机制。为了实现这一目标,我们开发并验证了两个
新的高通量方法,能够量化的分子和形态学的影响,
CAD基因座中的数千个基因:优化的Perturb-seq(将基因与转录表型联系起来)和合并
扰动细胞绘画(将基因与形态效应联系起来)。
我们建议使用这些技术,以及新的和新颖的计算方法,以:1)分析
干扰CAD基因座基因在血管内皮细胞(EC)中的转录组学效应,
与动脉粥样硬化相关的刺激,2)量化干扰所有CAD基因座基因的形态学效应
在EC中,3)将这些数据与表观基因组和遗传数据整合以提名致病基因并建立假设
将变异与基因、基因与疾病相关的细胞表型联系起来,然后测试前5名,
这些假设中的每一个都使用变体编辑和EC功能测定。这包括几个优先的因果关系
调节KLF 2表达上游EC剪切应力反应的变体假说。
这些研究的完成将加速对CAD遗传学与疾病之间联系的理解,
并提供了对CAD中EC功能的深入了解,这可能会为开发新的治疗类别提供信息。
更广泛地说,这项研究将建立新的可扩展的实验和计算方法,
基因和细胞表型的疾病变异,这可能会大大加快变异功能
心血管和其他常见疾病的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSE M ENGREITZ其他文献
JESSE M ENGREITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSE M ENGREITZ', 18)}}的其他基金
MorPhiC: Constructing a Catalog of Cellular Programs to Identify and Annotate Human Disease Genes
MorPhiC:构建细胞程序目录来识别和注释人类疾病基因
- 批准号:
10733164 - 财政年份:2023
- 资助金额:
$ 68.66万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10446856 - 财政年份:2022
- 资助金额:
$ 68.66万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10591585 - 财政年份:2022
- 资助金额:
$ 68.66万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10318508 - 财政年份:2021
- 资助金额:
$ 68.66万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10633286 - 财政年份:2021
- 资助金额:
$ 68.66万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10480918 - 财政年份:2021
- 资助金额:
$ 68.66万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10295739 - 财政年份:2021
- 资助金额:
$ 68.66万 - 项目类别:
Mapping enhancer-gene regulation in single cells to connect genetic variants to target genes and cell types
绘制单细胞中的增强子基因调控图谱,将遗传变异与目标基因和细胞类型联系起来
- 批准号:
10434907 - 财政年份:2020
- 资助金额:
$ 68.66万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10153858 - 财政年份:2020
- 资助金额:
$ 68.66万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10365988 - 财政年份:2020
- 资助金额:
$ 68.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 68.66万 - 项目类别:
Research Grant