Elucidating how transcription factors MAFA and MAFB and mitochondrial activity control human β cell identity and function
阐明转录因子 MAFA 和 MAFB 以及线粒体活性如何控制人类细胞的身份和功能
基本信息
- 批准号:10660007
- 负责人:
- 金额:$ 14.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectB-LymphocytesBackBeta CellBiogenesisBiological AssayBlood GlucoseCell Differentiation processCell LineCell MaturationCell physiologyCellsComplement Factor BConsumptionDataDefectDiabetes MellitusEquilibriumEtiologyFailureFeedbackFunctional disorderFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGene Expression RegulationGene TargetingGenesGeneticGenetic TranscriptionGlucoseHealthHomoHumanImpairmentInsulinLife Cycle StagesMetabolicMetabolic ControlMitochondriaMitochondrial DNAMusNon-Insulin-Dependent Diabetes MellitusNuclearOxidative StressOxygen ConsumptionPathway interactionsPatientsPhosphotransferasesPhysiologicalProteinsRegulationReportingRoleSignal TransductionStructureTestingTransplantationbiological adaptation to stressblood glucose regulationcell dedifferentiationfactor Afunctional restorationhuman embryonic stem cellhumoral immunity deficiencyin vivoinsulin secretionisletknock-downmaturity onset diabetes of the youngmetabolomicsmitochondrial dysfunctionoxidative damagepharmacologicprogramsresponsesingle-cell RNA sequencingstem cellstargeted treatmenttooltranscription factor
项目摘要
Project Summary
Type 2 diabetes (T2D) can be attributed to loss of β-cell identity or de-differentiation, marked by acquisition of
immature cell markers and loss of insulin expression and secretion. While the etiology of β-cell immaturity in T2D
is unclear, impairments in nuclear-encoded mitochondrial gene expression and transcription factor (TF)
expression occur. Additionally, defects in mitochondrial structure and function leads to impaired glucose-
stimulated insulin secretion (GSIS) and have been reported in β-cells of human T2D patients. Interestingly, the
transcriptional changes that occur during β-cell immaturity involve loss of the nuclear-encoded mitochondrial
gene expression program. My studies will test the hypothesis that β-cell immaturity in T2D is driven by loss of
mitochondrial functional gene regulation by the TFs MAF bZIP transcription factor A (MAFA) or B (MAFB).
Furthermore, I predict that MAFA/MAFB are themselves targets of mito-nuclear crosstalk through a retrograde
signaling cascade induced by defects in mitochondrial function.
I will elucidate the contribution of MAFA and MAFB on metabolic control in human β cells through
regulation of mitochondrial function (Aim 1). I will determine how loss of MAFA and/or MAFB affects
mitochondrial function and β cell identity by assaying oxygen consumption and gene expression in MAFA and/or
MAFB knockdown human pseudoislets and EndoC-βH3 β cell lines. Metabolomics will be performed on EndoC-
βH3 β cell lines to determine how MAFA/B influences fuel utilization. My preliminary data shows that genetic loss
of mitophagy (i.e., the balance of mitochondrial biogenesis and turnover) reduces β-cell maturity. This includes
physiologic, metabolic, and transcriptional signatures consistent with metabolic overload, oxidative damage, and
the integrated stress response (ISR). MAFA (and likely MAFB) is known to be more sensitive to oxidative stress
associated with T2D β-cell dysfunction than other TFs. While nuclear expression of β-cell mitochondrial genes
are well known, mitochondrial feedback to drive β-cell nuclear gene expression (retrograde signaling) has not
been analyzed. I will delineate if TF levels and β-cell maturity are altered in response to mitochondrial dysfunction
(Aim 2). Further, I observed that pharmacological inhibition of the ISR relieves markers of immaturity in islets of
mitophagy-deficient mice. Utilizing pharmacologic tools and analysis of gene expression in human pseudoislet
transplants and EndoC-βH3 cells, I will interrogate how such conditions impact human β cells. I expect that
MAFA (and possibly MAFB) levels will be reduced because of their ISR sensitivity. Moreover, I will determine if
inhibition of the ISR restores MAFA/MAFB expression and reverses β-cell immaturity in the background of
mitochondrial damage.
项目摘要
2型糖尿病(T2 D)可归因于β细胞身份的丧失或去分化,其标志为β细胞的获得。
未成熟细胞标记物和胰岛素表达和分泌的丧失。虽然T2 D中β细胞不成熟的病因学
目前尚不清楚,核编码的线粒体基因表达和转录因子(TF)
表达发生。此外,线粒体结构和功能的缺陷导致葡萄糖受损-
刺激的胰岛素分泌(GSIS),并且已经在人T2 D患者的β细胞中报道。有趣的是
在β细胞不成熟期间发生的转录变化涉及核编码的线粒体DNA的丢失,
基因表达程序。我的研究将检验T2 D中β细胞不成熟是由β细胞缺失驱动的假设。
通过TF MAF bZIP转录因子A(MAFA)或B(MAFB)的线粒体功能基因调控。
此外,我预测,MAFA/MAFB本身是通过一个逆行的线粒体核串扰的目标,
线粒体功能缺陷引起的信号级联反应。
我将阐明MAFA和MAFB对人β细胞代谢控制的贡献,
线粒体功能的调节(目的1)。我将确定MAFA和/或MAFB的丢失如何影响
线粒体功能和β细胞特性,通过测定MAFA和/或
MAFB敲低人假胰岛和EndoC-βH3 β细胞系。代谢组学将在EndoC上进行-
βH3 β细胞系,以确定MAFA/B如何影响燃料利用。我的初步数据显示基因缺失
线粒体自噬(即,线粒体生物发生和周转的平衡)降低β-细胞成熟。这包括
生理、代谢和转录特征与代谢过载、氧化损伤和
综合应激反应(ISR)。已知MAFA(可能还有MAFB)对氧化应激更敏感,
与T2 D β-细胞功能障碍相关。而β细胞线粒体基因的核表达
众所周知,驱动β细胞核基因表达的线粒体反馈(逆行信号传导)并没有
被分析。我将描述TF水平和β细胞成熟度是否因线粒体功能障碍而改变
(Aim 2)的情况。此外,我观察到ISR的药理学抑制减轻了胰岛中的不成熟标志物,
线粒体自噬缺陷小鼠。利用药理学工具和分析人假胰岛中的基因表达
移植和EndoC-βH3细胞,我将询问这些条件如何影响人类β细胞。我预计
由于ISR敏感性,MAFA(可能还有MAFB)水平将降低。此外,我将确定,
抑制ISR可恢复MAFA/MAFB表达并逆转β细胞不成熟,
线粒体损伤
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily M Walker其他文献
Emily M Walker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists