Reverse Tissue-Manufacturing of the Multicellular Sinoatrial Node Organoids
多细胞窦房结类器官的逆向组织制造
基本信息
- 批准号:10660542
- 负责人:
- 金额:$ 61.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdenosineAdultArchitectureArrhythmiaAtrioventricular BlockBiological AssayBiological PacemakersCalciumCardiacCardiac MyocytesCell ReprogrammingCellsChildhoodChronicClinicalClock proteinConnective TissueCoupledDataDevelopmentDiseaseEngineeringEquipment MalfunctionFibroblastsFunctional disorderGene ExpressionGenetic TranscriptionGoalsHCN4 geneHealthcareHeart ArrestHeart AtriumHeart BlockHeart failureHumanHybridsImpairmentImplantIn VitroInferiorLongitudinal StudiesMediatingMembraneModelingMyocardial dysfunctionNewborn InfantNodalOperative Surgical ProceduresOrganoidsPacemakersPathway interactionsPatientsPositioning AttributePreclinical TestingPrevalenceRodent ModelSeveritiesShapesSinoatrial NodeSiteSomatic CellStructureTestingTheoretical modelTissuescare burdencell typechronotropicdesigndrug developmenteffective therapyelectronic pacemakerheart rhythmimplantationimprovedin silicoin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesmanufacturemillisecondnodal myocytenovel therapeutic interventionoptogeneticsoverexpressionpediatric patientspreventprogramsprotein expressionpublic health relevancestem cell differentiationtargeted treatmenttool
项目摘要
Project Summary/Abstract
The recent increasing prevalence, severity, and healthcare burden of sinoatrial (SA) node dysfunction
emphasize the need for more detailed studies of SA node functions that allow for effective therapy to treat and
prevent SA node dysfunction. The major mechanisms of the dysfunction are the impaired ability of pacemaker
cells to induce spontaneous rhythm (automaticity) and adverse remodeling in their electric conduction to
surrounding atrial tissues (SA conduction). However, the current SA node or pacemaker models have been
limited to theoretical models and isolated single cell-type cells or cell clusters, leaving a gap to model the
autonomous cardiac contraction and heart rhythm and dysfunctions in automaticity and SA conduction. Moreover,
the current single cell-type pacemakers worsened heart rhythm stability during one-month in vivo integration,
which limits its application as a clinically viable biological pacemaker capable of generating robust pacemaking
and conduction.
To address the current limitation of SA node models, this proposal aims to develop a three-dimensional
multicellular SA node organoid by reproducing human SA node’s multicellular tissue structure and fail-safe
mechanisms. In contrast to the single cell-type biological pacemakers, human SA node is a natural organoid with
elaborate insulated architecture and heterogeneous cellular composition. Moreover, the human SA node is
equipped with redundant pacemaker sites and conduction pathways to protect the rhythm against adverse
chronotropic stimulations. Thus, inspired by SA node’s structure and fail-safe mechanism, we aim at enhancing
robustness in both automaticity and SA conduction: First, we will focus on enhancing automaticity of SA
node organoids by identifying the expression of pacemaker membrane and calcium clock proteins, cell
composition, and shape (Aim 1). Second, we will concentrate on improving conduction of SA node organoids
by coordinating multiple pacemaker sites and conduction pathways (Aim 2). Last, we will evaluate the
robustness of the SA node organoids in in vitro setting and in vivo atrioventricular block rodent model (Aim 3).
These studies will define if tissue-level architecture and multicellular compositions mediate SA node’s robust
pacemaking and conduction and may reveal a high-fidelity tissue-level biological pacemaker as a novel
therapeutic strategy for SA node dysfunctions. The proposed organoids will be suitable for human preclinical
testing assays to accelerate drug development, for dissecting patient-specific SA node disease pathophysiology,
and for the development of implantable biological pacemakers.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung Jin Park其他文献
Sung Jin Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sung Jin Park', 18)}}的其他基金
Molecular mechanisms underlying morphogenesis of the tectorial membrane
盖膜形态发生的分子机制
- 批准号:
10210885 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Molecular mechanisms underlying morphogenesis of the tectorial membrane
盖膜形态发生的分子机制
- 批准号:
10348212 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Molecular mechanisms underlying morphogenesis of the tectorial membrane
盖膜形态发生的分子机制
- 批准号:
10552571 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Signaling mechanism for synapse formation and function regulated by the release of GPI-anchored synaptogenic factors from astrocytes
星形胶质细胞释放 GPI 锚定的突触因子调节突触形成和功能的信号机制
- 批准号:
10188651 - 财政年份:2017
- 资助金额:
$ 61.08万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)