Chemical proteomic investigation of lipid kinase specificity and druggability
脂质激酶特异性和成药性的化学蛋白质组学研究
基本信息
- 批准号:10660099
- 负责人:
- 金额:$ 39.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-13 至 2023-08-24
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffectAnabolismAnimalsArchitectureAttenuatedAzolesBindingBinding SitesBiochemicalBioenergeticsBiologicalBiological AssayBiologyCD8B1 geneCatalytic DomainCell membraneCell physiologyCellsCellular biologyChemicalsClinicalCodeCouplingDAG/PE-Binding DomainDevelopmentDiacylglycerol KinaseDiglyceridesDiseaseDrug TargetingEnvironmentEnzymesFamilyGeneticGoalsHumanImmunosuppressionImmunotherapyImpairmentIndividualInvestigationKnock-outKnowledgeLigand BindingLigandsLinkLipidsLocationLysineMAP Kinase GeneMammalsMapsMediatingMembraneMetabolicMetabolismMethodsModelingModificationMolecularMutationOrganismOutcome StudyPhosphatidic AcidPhospholipidsPhosphorylationPhosphotransferasesProtein EngineeringProtein IsoformsProtein KinaseProteinsProteomeProteomicsReceptor SignalingRecombinantsRegulationReportingResearchRoleSeriesShapesSignal TransductionSiteSpecificitySubstrate SpecificitySystemT cell regulationT cell responseT-Cell ActivationT-Cell ReceptorT-LymphocyteTestingTherapeuticTranslatingTriglyceridesTumor AntigensTumor-Infiltrating LymphocytesTyrosineVAV1 genecandidate identificationchemotherapydrug discoveryexperimental studyextracellularin vivoinhibitorinsightinterestkinase inhibitorlipid metabolismlipidomelipidomicsmetabolomicsmimeticsmouse modelnoveloverexpressionpharmacologicprogramsreceptorresponsesmall moleculetherapeutic targettranscription factortumor
项目摘要
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that catalyze phosphorylation of diacylglycerol
(DAG) to generate phosphatidic acid (PA). Both DAG and PA serve as potent lipid messengers to shape cellular
responses by altering subcellular localization, activation, and function of essential receptor proteins (ranging
from enzymes to transcription factors). DAG and PA also serve as building blocks for phospholipid and
triglyceride biosynthesis and integral to membrane architecture and bioenergetics. The significance of our
proposed studies is the enormous therapeutic potential of targeting individual DGKs because of their
fundamental role in sculpting the lipidome to support metabolic, structural, and signaling demands of healthy and
diseased cells. Despite their clinical value and discovery nearly 30 years ago, gaps in knowledge with regards
to ligand binding and regulation of DGK active-sites in living systems have confounded basic understanding of
how 10 mammalian DGK isoforms, which share a common catalytic domain, are capable of regulating distinct
metabolic and signaling functions. We will test our hypothesis that C1 and other non-catalytic domains, which
largely differentiate DGK isoforms, function in substrate and inhibitor recognition of DGK active sites.
The proposed research program will test whether selective blockade of DGK can restore deficient DAG
signaling to overcome immunosuppression of tumor infiltrating lymphocyte activity. Genetic and clinical evidence
point to DGKs as promising targets for reversing immunosuppression of T cells although the molecular
mechanisms coupling disrupted DGK metabolism to enhanced TCR signaling are not clear. Our mechanistic
studies will establish a testable model for fundamental understanding of substrate and inhibitor recognition in
DGK active sites to guide development of new chemical strategies to perturb activity of T cell specific DGKs in
vivo for immunotherapy applications. Our long-term goals for this proposal are to functionally map novel and
druggable small molecule binding sites on DGK and potentially other DGK isoforms in T cells to: 1) gain
molecular level insights into DAG fatty acyl chain recognition and specificity, 2) identify molecular features of
enzyme active sites to target lipid versus protein kinases, and 3) develop new inhibitors for selective inactivation
of DGK isoforms in live cells and animals.
We will test 2 independent yet related specific aims directed at: (Aim 1) identification of the DAG binding
site, (Aim 1) understanding how individual DGK domains couple extracellular signals to shape T cell responses,
(Aim 2) determining how DGK inhibitors amplify T cell activation, (Aim 2) understanding how DGK inhibitors
reverse T cell immunosuppression in vivo, and (Aim 2) determining if DGK inhibitors affect membrane
translocation. The overall impact of our findings will be to understand how intrinsic features of DGKs cross-talk
with extrinsic features of cellular environments to form the basis of a lipid signaling code that can be
therapeutically targeted for reversing immunosuppression of T cells.
二酰基甘油激酶(DGKs)是催化二酰甘油磷酸化的多结构域脂蛋白激酶
(DAG)生成磷脂酸(PA)。DAG和PA都是形成细胞的强有力的脂质信使
通过改变基本受体蛋白的亚细胞定位、激活和功能来作出反应(Range
从酶到转录因子)。DAG和PA也是磷脂和
甘油三酯的生物合成以及膜结构和生物能量学的组成部分。我们的重要意义在于
拟议的研究是针对单个DGK的巨大治疗潜力,因为它们
在塑造脂体以支持代谢、结构和信号需求方面的基础作用
病态细胞。尽管它们在近30年前具有临床价值和发现,但关于它们的知识差距
对配体的结合和对生命系统中DGK活性位点的调节扰乱了对
10种具有共同催化结构域的哺乳动物DGK亚型如何能够调节不同的
代谢和信号功能。我们将测试我们的假设,即C1和其他非催化结构域,它们
主要区分DGK的异构体、在底物中的功能以及DGK活性部位的抑制剂识别。
拟议的研究计划将测试选择性阻断DGK是否可以恢复缺陷的DAG
克服肿瘤浸润性淋巴细胞活性免疫抑制的信号。遗传学和临床证据
指出DGKs是逆转T细胞免疫抑制的有希望的靶点,尽管分子
DGK代谢受阻与TCR信号增强的耦合机制尚不清楚。我们的机械师
研究将建立一个可测试的模型,以基本了解底物和抑制剂识别
DGK活性部位指导开发新的化学策略以干扰T细胞特异性DGK的活性
用于免疫治疗的活体应用。我们对这项提议的长期目标是在功能上绘制出新的和
T细胞中Dgk和潜在的其他Dgk亚型上的可药物小分子结合位点:1)获得
分子水平对DAG脂肪酰链识别和特异性的洞察,2)确定分子特征
酶活性部位,靶向脂类和蛋白激酶,以及3)开发新的选择性失活抑制剂
在活细胞和动物中的DGK亚型。
我们将测试两个独立但相关的特定目标,旨在:(目标1)识别DAG结合
站点,(目标1)了解单个DGK结构域如何耦合细胞外信号来塑造T细胞反应,
(目标2)确定DGK抑制剂如何放大T细胞激活,(目标2)了解DGK抑制剂如何
在体内逆转T细胞免疫抑制,以及(目标2)确定DGK抑制剂是否影响膜
易位。我们发现的总体影响将是理解DGK的内在特征是如何相互作用的
与细胞环境的外部特征一起形成脂质信令编码的基础,该编码可以
治疗靶向逆转T细胞的免疫抑制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ku-Lung Hsu其他文献
Ku-Lung Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ku-Lung Hsu', 18)}}的其他基金
Defining and targeting substrate specificity of protein tyrosine phosphatases
蛋白质酪氨酸磷酸酶的底物特异性的定义和靶向
- 批准号:
10341499 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Defining and targeting substrate specificity of protein tyrosine phosphatases
蛋白质酪氨酸磷酸酶的底物特异性的定义和靶向
- 批准号:
10538607 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Defining and targeting substrate specificity of protein tyrosine phosphatases
蛋白质酪氨酸磷酸酶的底物特异性的定义和靶向
- 批准号:
10580475 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Endocannabinoid Biosynthesis in Inflammation and Pain
炎症和疼痛中的内源性大麻素生物合成
- 批准号:
9398439 - 财政年份:2017
- 资助金额:
$ 39.13万 - 项目类别:
Endocannabinoid Biosynthesis in Inflammation and Pain
炎症和疼痛中的内源性大麻素生物合成
- 批准号:
10400420 - 财政年份:2017
- 资助金额:
$ 39.13万 - 项目类别:
Endocannabinoid Biosynthesis in Inflammation and Pain
炎症和疼痛中的内源性大麻素生物合成
- 批准号:
9980632 - 财政年份:2017
- 资助金额:
$ 39.13万 - 项目类别:
Endocannabinoid Biosynthesis in Inflammation and Pain
炎症和疼痛中的内源性大麻素生物合成
- 批准号:
10198879 - 财政年份:2017
- 资助金额:
$ 39.13万 - 项目类别:
Functional Characterization of Diacylglycerol Lipases in Mammalian Physiology
二酰甘油脂肪酶在哺乳动物生理学中的功能表征
- 批准号:
9109601 - 财政年份:2015
- 资助金额:
$ 39.13万 - 项目类别:
Functional Characterization of Diacylglycerol Lipases in Mammalian Physiology
二酰甘油脂肪酶在哺乳动物生理学中的功能表征
- 批准号:
8701001 - 财政年份:2014
- 资助金额:
$ 39.13万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant














{{item.name}}会员




