Expanding the Chemical Diversity of Therapeutic Oligonucleotides
扩大治疗性寡核苷酸的化学多样性
基本信息
- 批准号:10660506
- 负责人:
- 金额:$ 68.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylgalactosamineAffectAllelesAmyotrophic Lateral SclerosisAnimal ModelAntisense OligonucleotidesArchitectureAsialoglycoprotein ReceptorBacterial Artificial ChromosomesBehaviorBehavioral AssayBiochemicalBiological AssayBrainBrain regionC9ORF72Cell NucleusCentral Nervous SystemCerebrospinal FluidChemicalsChemistryClinicClinicalComplexCorpus striatum structureCytoplasmDevelopmentDiseaseDisease modelDoseEtiologyEvaluationExhibitsFundingGene CombinationsGene ExpressionGene Expression RegulationGene SilencingGene TargetingGenesGoalsGrantHuntington DiseaseIn Situ HybridizationIn VitroInjectionsInvestigationLaboratoriesLigandsLiverLiver diseasesMSH3 geneMeasuresMediatingMedicalMessenger RNAMetabolicMethodsModelingMolecularNational Institute of Neurological Disorders and StrokeNeurodegenerative DisordersNeuronsNuclearNucleic AcidsOligonucleotidesOutcomePharmaceutical PreparationsPharmacotherapyRegimenRodentSafetySheepSmall Interfering RNASpecificitySpinal CordStructureTechnologyTherapeuticTherapeutic EffectTherapeutic IndexTissuesToxic effectTranscriptVariantVertebral columnWorkcombinatorialgene functiongene productimprovedin vivoin vivo Modelinnovationlipophilicitymutantnew technologynonhuman primatenovelpreventresearch clinical testingsuperoxide dismutase 1technology platformtherapeutic RNAtherapeutic candidateuptake
项目摘要
Project Summary/Abstract
Therapeutic oligonucleotide compounds (e.g., siRNA, antisense) hold promise as transformative drugs for the
treatment of many genetically-defined neurodegenerative disorders, including Huntington's Disease (HD) and
Amyotrophic Lateral Sclerosis (ALS). Therapeutic oligonucleotides silence disease genes by targeting and
degrading mRNA, thus preventing the expression of toxic gene products. The sequence specificity and long-
lasting effect of therapeutic oligonucleotides provide a powerful therapeutic paradigm, as long as they can be
delivered to the relevant target tissue. Funded by NINDS, we have identified two classes of therapeutic siRNA
that show robust distribution and efficacy in the central nervous system (CNS): di-valent siRNAs and lipophilic
conjugates. This discovery has resulted in transformative therapeutic candidates advancing towards formal
clinic investigation. Nevertheless, efficient, uniform, long-term, allele-selective, non-toxic delivery remains a
significant hurdle in expanding oligonucleotide drugs to treat neurodegenerative disorders.
This proposal aims to develop and characterize innovative chemistries that enable uniform distribution,
multi-target silencing, and intra-nuclear gene modulation in the CNS in vivo. This proposal describes a class of
multivalent siRNA compounds that exhibit complete metabolic stability, robust distribution in the spinal cord
and brain (rodents, sheep, NHPs) when infused via cerebrospinal fluid (CSF), efficient uptake by neurons, and
potent and durable silencing without toxicity for at least six months after a single injection. While developing
CNS-active di-valent siRNAs, we developed stabilizing backbone chemistry called exNA. Here, we propose
structure-function studies to investigate how valency (above two), linker, and exNA-based stabilization affect
therapeutic activity. Remarkably, increased valency further reduces the rate of CSF clearance, while exNA-
based stabilization enhances the duration of effect. In addition, modulating the chemical architecture can shift
the intracellular distribution of siRNA from the cytoplasmic to the nucleus to target nuclear-localized mRNA.
Finally, the use of orthogonal chemistry to synthesize multi-targeting compounds is essential for treating
diseases with complex etiology.
Completion of this proposal will: (i) optimize multivalent, ultra-stable configuration that supports uniform,
potent, specific, and durable multi-target silencing (longer than six months) in the central nervous system; and
(ii) establish a developmental path toward novel combinatorial treatments for HD and ALS. In addition, this
proposal seeks to establish a technology platform to directly target any gene or combination of genes
expressed in any region of the central nervous system. Successful completion of this work will therefore enable
studies of gene function in the central nervous system and the development of novel oligonucleotide-based
therapies for genetically defined neurodegenerative diseases.
项目总结/摘要
治疗性寡核苷酸化合物(例如,siRNA,反义)有望成为
治疗许多遗传学定义的神经退行性疾病,包括亨廷顿病(HD)和
肌萎缩侧索硬化症(ALS)。治疗性寡核苷酸通过靶向沉默疾病基因,
降解mRNA,从而阻止有毒基因产物的表达。序列特异性和长-
治疗性寡核苷酸的持久作用提供了强有力的治疗范例,只要它们可以
递送到相关的靶组织。在NINDS的资助下,我们已经鉴定了两类治疗性siRNA,
在中枢神经系统(CNS)中显示出稳健的分布和功效:二价siRNA和亲脂性siRNA
结合物。这一发现导致了变革性的治疗候选人向正式的
临床调查然而,有效、均匀、长期、等位基因选择性、无毒的递送仍然是一个挑战。
在扩大寡核苷酸药物治疗神经退行性疾病方面存在重大障碍。
该提案旨在开发和表征能够实现均匀分布的创新化学品,
多靶点沉默和体内CNS中的核内基因调节。该提案描述了一类
多价siRNA化合物,其表现出完全的代谢稳定性、在脊髓中的稳健分布
和脑(啮齿动物、绵羊、NHP),当通过脑脊液(CSF)输注时,神经元有效摄取,以及
有效和持久的沉默无毒性至少六个月后,单次注射。而发展中
CNS活性的二价siRNA,我们开发了称为exNA的稳定骨架化学。在此,我们建议
结构-功能研究,以研究化合价(以上两种)、接头和基于exNA的稳定性如何影响
治疗活性。值得注意的是,增加的化合价进一步降低了CSF清除率,而exNA-
基于稳定化增强了效果的持续时间。此外,调节化学结构可以改变
siRNA从细胞质到细胞核的细胞内分布,以靶向细胞核定位的mRNA。
最后,使用正交化学来合成多靶向化合物对于治疗
病因复杂的疾病。
该提案的完成将:(i)优化多价,超稳定的配置,支持统一,
在中枢神经系统中有效、特异和持久的多靶点沉默(超过6个月);以及
(ii)为HD和ALS的新型组合治疗建立发展途径。另外这款
一项提案寻求建立一个技术平台,直接针对任何基因或基因组合
在中枢神经系统的任何区域表达。因此,顺利完成这项工作将使
中枢神经系统基因功能的研究和基于阿糖胞苷的新型药物的开发
基因定义的神经退行性疾病的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANASTASIA KHVOROVA其他文献
ANASTASIA KHVOROVA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANASTASIA KHVOROVA', 18)}}的其他基金
Chemical engineering of therapeutic RNAs for extrahepatic delivery
用于肝外递送的治疗性 RNA 的化学工程
- 批准号:
10381504 - 财政年份:2019
- 资助金额:
$ 68.82万 - 项目类别:
Chemical engineering of therapeutic RNAs for extrahepatic delivery
用于肝外递送的治疗性 RNA 的化学工程
- 批准号:
10600090 - 财政年份:2019
- 资助金额:
$ 68.82万 - 项目类别:
Chemical engineering of therapeutic RNAs for extrahepatic delivery
用于肝外递送的治疗性 RNA 的化学工程
- 批准号:
9913311 - 财政年份:2019
- 资助金额:
$ 68.82万 - 项目类别:
Enhancing CRISPR Gene Editing in Somatic Tissues by Chemical Modification of Guides and Donors
通过对引导体和供体进行化学修饰来增强体细胞组织中的 CRISPR 基因编辑
- 批准号:
10467042 - 财政年份:2018
- 资助金额:
$ 68.82万 - 项目类别:
Enhancing CRISPR Gene Editing in Somatic Tissues by Chemical Modification of Guides and Donors
通过对引导体和供体进行化学修饰来增强体细胞组织中的 CRISPR 基因编辑
- 批准号:
9789392 - 财政年份:2018
- 资助金额:
$ 68.82万 - 项目类别:
Enhancing CRISPR Gene Editing in Somatic Tissues by Chemical Modification of Guides and Donors
通过对引导体和供体进行化学修饰来增强体细胞组织中的 CRISPR 基因编辑
- 批准号:
10671171 - 财政年份:2018
- 资助金额:
$ 68.82万 - 项目类别:
Enhancing CRISPR Gene Editing in Somatic Tissues by Chemical Modification of Guides and Donors
通过对引导体和供体进行化学修饰来增强体细胞组织中的 CRISPR 基因编辑
- 批准号:
10387085 - 财政年份:2018
- 资助金额:
$ 68.82万 - 项目类别:
Expanding the chemical diversity of therapeutic oligonucleotides to treat neurodegenerative disorders
扩大治疗性寡核苷酸的化学多样性以治疗神经退行性疾病
- 批准号:
10216362 - 财政年份:2017
- 资助金额:
$ 68.82万 - 项目类别:
Development of RNAi based sFLT1-targeting therapeutics for treatment of Preeclampsia
开发基于 RNAi 的 sFLT1 靶向疗法来治疗先兆子痫
- 批准号:
9176657 - 财政年份:2016
- 资助金额:
$ 68.82万 - 项目类别:
Mid-Scale RNA Synthesis, Purification and Quality Control System
中规模 RNA 合成、纯化和质量控制系统
- 批准号:
8826399 - 财政年份:2015
- 资助金额:
$ 68.82万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 68.82万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 68.82万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 68.82万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 68.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists