Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy

人工智能预测急性肾损伤患者连续肾脏替代治疗的结果

基本信息

项目摘要

ABSTRACT Acute kidney injury (AKI) affects up to half of critically ill patients admitted to intensive care units (ICU). In patients with AKI and hemodynamic instability, continuous renal replacement therapy (CRRT) is the preferred dialysis modality. ICU mortality in this vulnerable population is high but kidney recovery occurs in up to two-thirds of survivors. Universally accepted and accurate approaches for predicting survival or kidney recovery in these patients do not exist currently. This is clinically relevant as prediction of key outcomes could guide decision-making of CRRT delivery, goals of acute care, and personalized post-ICU care according to kidney recovery prognosis. Since there are no proven interventions to improve outcomes in these patients, identification of modifiable risk factors and sub-phenotypes is necessary to develop precision medicine approaches in CRRT. Due to advances in artificial intelligence (AI) and availability of multi-modal data, deep learning (DL) –a subset of AI– is a valuable approach that allows construction of accurate and reliable risk prediction models. Further, the use of novel algorithms such as the Feasible Solution Algorithm (FSA) could help identify patient sub-phenotypes and model applications. We propose to develop and validate innovative and reproducible DL approaches to predict RRT-free survival at actionable timepoints and use FSA to identify patient sub-phenotypes with differing RRT-free survival risk according to multi- modal data. Our published preliminary data demonstrated superiority of DL models compared to optimized logistic regression for RRT-free survival prediction. Prediction of 24-hour mortality was improved by incorporating time-series data during CRRT. We hypothesize that time-series multi-modal data (including EHR and CRRT machine data) will generate accurate and generalizable risk prediction to guide clinical interventions and identify sub-phenotypes for model interpretation and clinical utility testing. We will utilize datasets from 9 institutions that encompass multi-modal EHR clinical data and programmatic and therapy data from CRRT machines for model and sub-phenotyping development, testing, and independent validation. This innovative research will 1) assist development of clinical decision support platforms to guide informed CRRT delivery and improve clinical outcomes and 2) identify sub-phenotypes of patients that could benefit from more personalized and testable novel CRRT interventions.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Girish Nitin Nadkarni其他文献

Girish Nitin Nadkarni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Girish Nitin Nadkarni', 18)}}的其他基金

Elucidating Genetic and Environmental Second Hits in Racial and Ethnic Minorities with APOL1 High-Risk Genotypes
阐明 APOL1 高风险基因型对少数种族和族裔的遗传和环境二次打击
  • 批准号:
    10554900
  • 财政年份:
    2022
  • 资助金额:
    $ 70.5万
  • 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
  • 批准号:
    10261059
  • 财政年份:
    2020
  • 资助金额:
    $ 70.5万
  • 项目类别:
Elucidating Genetic and Environmental Second Hits in Racial and Ethnic Minorities with APOL1 High-Risk Genotypes
阐明 APOL1 高风险基因型对少数种族和族裔的遗传和环境二次打击
  • 批准号:
    10318592
  • 财政年份:
    2020
  • 资助金额:
    $ 70.5万
  • 项目类别:
Elucidating Genetic and Environmental Second Hits in Racial and Ethnic Minorities with APOL1 High-Risk Genotypes
阐明 APOL1 高风险基因型对少数种族和族裔的遗传和环境二次打击
  • 批准号:
    10549718
  • 财政年份:
    2020
  • 资助金额:
    $ 70.5万
  • 项目类别:
Risk Clustering and Stratification in Genetically High-Risk Individuals Using Electronic Medical Records and Biomarkers
使用电子病历和生物标记对遗传高危个体进行风险聚类和分层
  • 批准号:
    9180312
  • 财政年份:
    2016
  • 资助金额:
    $ 70.5万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 70.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了