Homogenized, engineered extracellular vesicles for intracranial targeting
用于颅内靶向的均质化、工程化细胞外囊泡
基本信息
- 批准号:10659682
- 负责人:
- 金额:$ 53.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-04 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAstrocytesBehaviorBiochemicalBiodistributionBiologicalBiological AssayBiological AvailabilityBiological ProcessBioreactorsBlood - brain barrier anatomyBrainBreast Cancer CellCancer cell lineCell LineCellsChemicalsClinicalComplexDiseaseDisseminated Malignant NeoplasmDoseDrug Delivery SystemsDrug TargetingEndotheliumEngineeringExhibitsFDA approvedFailureFeedbackFormulationFoundationsGlioblastomaGoalsGood Manufacturing ProcessHalf-LifeHeterogeneityHybridsImageImmuneLabelLibrariesLigandsLiposomesMalignant NeoplasmsMalignant neoplasm of brainMeasuresMechanicsMediatingMedicineMethodsMicrofluidicsModelingMolecularMusNeurodegenerative DisordersNeurogliaNeuronsPathway interactionsPatientsPenetrationPerformancePharmaceutical PreparationsPhase I Clinical TrialsPopulationPropertyProteinsRNAReportingResearchSafetyShapesSolidSourceSterilityStructureSystemTechniquesTestingTherapeuticTissuesToxic effectTranslatingTreatment EfficacyTropismVisionWorkbiomaterial compatibilityblood-brain barrier crossingcell typeclinical practicecombatcontrolled releasedelivery vehicledesigndrug release profileefficacy studyexpectationextracellular vesiclesfunctional improvementimmune clearancein vivoinnovationinterestloss of functionmimeticsmouse modelnanoarchitecturenanocarriernanomaterialsnanoparticlenanoscalenervous system disorderneuralnext generationnovelnovel strategiesparticlepersonalized carepharmacokinetics and pharmacodynamicsreceptorsafety studysafety testingsuccesssynthetic drugtemozolomidetooltranscytosistumoruptake
项目摘要
PROJECT SUMMARY/ABSTRACT
The objective of the proposed research is to engineer a targeted biological nanoparticle platform with high
intracranial delivery and glial cell targeting for broad applicability in drug delivery and imaging. A great deal of
work has already been accomplished elucidating the ability of certain extracellular vesicles (EVs) to cross
endothelial barriers, especially the blood-brain barrier (BBB). Other work has established that EVs exhibit
excellent tropism towards particular tissues and cell types. The focus of this proposal is to understand the
mechanisms by which certain EV subpopulations accomplish these feats, and to engineer them into a hybrid
liposome-EV drug delivery platform. Given the plethora of recent research into EV structure and function, it is
well known that they exhibit considerable compositional heterogeneity. But fundamental questions still exist as
to how EV prescribed functions differ across these subpopulations. It is likely that off-target effects and
inefficiencies in capturing native EV functions with engineered mimetics are due to their substantial
heterogeneity. Our first hypothesis is that homogenization of EVs towards a narrow size range with uniform
biomolecular content will result in a more potent and controllable drug delivery platform that maintains native EV
function yet reduces off-target toxicity. Our second hypothesis is that fusion of homogenized EVs and
liposomes with various functions (i.e., efficient BBB permeation through receptor mediated transcytosis) will
deliver an engineered product combining desired functions. We plan on addressing these hypotheses through
rigorous engineering to homogenize EVs (Aim 1) alongside biochemical assays to detangle the mechanisms
important for EV intracranial delivery. We will utilize EVs isolated from gliatropic “experts”, namely a vast library
of glioblastoma (GBM) patient derived primary cell lines, brain-metastasizing breast cancer cells, and other glial
and neuronal cells like astrocytes and neurons. Key molecular players important for intracranial delivery identified
from those studies will feedback into synthesis of engineered EVs (eEVs) via subsequent fusion with carrier EVs
(Aim 2). For the engineered eEV product, we will also incorporate synthetic liposomes decorated with known
ligands to trigger receptor mediated transcytosis through the BBB endothelial layer. To provide the greatest
opportunity to measure efficiency of functional intracranial delivery, we plan to load formulated, labeled, and
homogenized eEVs with a chemotherapeutic payload and determine drug-release profile, biodistribution, and
efficacy in healthy mice with intact BBBs and then an orthotopic GBM model (Aim 3). The proposed work is
important because it seeks to eliminate the highly confounding factor of particle-to-particle variability plaguing
effective application of EVs as potent drug-delivery vehicles. Success in homogenizing eEVs will result in an
increased understanding of their biological function and assist in their application to combat a wide variety of
neurological disorders where current drug delivery approaches are thwarted by low intracranial delivery.
项目总结/摘要
所提出的研究的目的是设计一种具有高生物学活性的靶向生物纳米颗粒平台。
颅内递送和神经胶质细胞靶向,在药物递送和成像中具有广泛的适用性。大量的
已经完成的工作阐明了某些细胞外囊泡(EV)跨膜的能力,
内皮屏障,尤其是血脑屏障(BBB)。其他工作已经确定,电动汽车表现出
对特定组织和细胞类型具有良好的向性。本提案的重点是了解
某些EV亚群完成这些壮举的机制,并将它们设计成一个混合体,
脂质体-EV药物递送平台。鉴于最近对EV结构和功能的大量研究,
众所周知,它们表现出相当大的组成异质性。但基本问题仍然存在,
EV处方功能在这些亚群中的差异。很可能脱靶效应和
用工程模拟物捕获天然EV功能的效率低下是由于它们的大量
异质性我们的第一个假设是,电动汽车朝着一个狭窄的尺寸范围均匀化,
生物分子含量将导致更有效和可控的药物递送平台,
功能还降低了脱靶毒性。我们的第二个假设是,同质化的电动汽车和
具有各种功能的脂质体(即,通过受体介导的转胞吞作用的有效BBB渗透)将
提供结合所需功能的工程产品。我们计划通过以下方式解决这些假设:
严格的工程设计,使EV均质化(目标1),同时进行生物化学测定,
这对于EV颅内递送是重要。我们将利用从胶质营养“专家”分离的电动汽车,即一个巨大的图书馆
胶质母细胞瘤(GBM)患者来源的原代细胞系、脑转移性乳腺癌细胞和其他胶质母细胞瘤(GBM)患者来源的原代细胞系。
和神经元细胞,如星形胶质细胞和神经元。确定了对颅内递送重要的关键分子
这些研究将通过随后与载体EV融合反馈到工程EV(eEV)的合成中
(Aim 2)。对于工程化的eEV产品,我们还将掺入用已知的修饰的合成脂质体。
配体以触发受体介导的穿过BBB内皮层的胞吞转运。提供最大的
有机会测量功能性颅内输送的效率,我们计划装载配制的、标记的和
具有化疗有效载荷的均质化eEV,并确定药物释放曲线、生物分布和
在具有完整BBB的健康小鼠和随后的原位GBM模型中的功效(目的3)。拟议的工作是
重要的是,它试图消除粒子间变异性干扰的高度混杂因素
电动汽车作为有效的药物输送载体的有效应用。电动汽车的成功将导致
提高对它们的生物功能的认识,并协助它们应用于打击各种各样的
目前的药物递送方法受到低颅内递送的阻碍的神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randy Carney其他文献
Randy Carney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randy Carney', 18)}}的其他基金
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
- 批准号:
10638114 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
9973569 - 财政年份:2020
- 资助金额:
$ 53.36万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
10377437 - 财政年份:2020
- 资助金额:
$ 53.36万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
10593985 - 财政年份:2020
- 资助金额:
$ 53.36万 - 项目类别:
相似国自然基金
Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
- 批准号:31760279
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
- 批准号:
24K18245 - 财政年份:2024
- 资助金额:
$ 53.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Accelerating Functional Maturation of Human iPSC-Derived Astrocytes
加速人 iPSC 衍生的星形胶质细胞的功能成熟
- 批准号:
10699505 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
- 批准号:
10676686 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
- 批准号:
10674346 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Investigating the role of diazepam binding inhibitor (DBI) in astrocytes and neural circuit maturation
研究地西泮结合抑制剂 (DBI) 在星形胶质细胞和神经回路成熟中的作用
- 批准号:
10567723 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别: