Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
基本信息
- 批准号:10659175
- 负责人:
- 金额:$ 135.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAllelesArchitectureBindingBiologicalBiological AssayCRISPR interferenceCandidate Disease GeneCell Differentiation processCell LineCell NucleusCell ReprogrammingCellsCellular MorphologyChIP-seqChromatinClustered Regularly Interspaced Short Palindromic RepeatsComputer ModelsConsensusCytosineDNA MethylationDataData SetDisease modelDrug ScreeningEnhancersEventFibroblastsGene ExpressionGene Expression RegulationGenesGeneticGenetic EngineeringGenetic TranscriptionGenetic VariationGenomeGenomicsGoalsHeterogeneityHumanHuman GeneticsHuman GenomeIn SituIndividualJointsKnowledgeMaintenanceMapsMeasurementMediatingMethodsMethylationModelingMolecularMolecular ConformationMouse StrainsMultiomic DataNaturePatientsPhenotypePopulationPopulation GeneticsProcessQuantitative Trait LociRNARNA methylationRegenerative MedicineRegulationRegulator GenesRegulatory ElementRepressionResolutionResourcesRoleSeriesSiteSomatic CellSpecificityStatistical MethodsSystemTechnologyTestingTherapeuticTimeUntranslated RNAVariantWorkc-myc Genescausal variantcell typeembryonic stem cellepigenomeepigenomicsexperimental studygene interactiongene regulatory networkgenetic variantgenome sequencinggenomic datahistone modificationinduced pluripotent stem cellinnovationinsightmolecular phenotypemultiple omicsnovelpluripotencypredictive modelingprogramsrepairedsingle-cell RNA sequencingstem cellstranscription factortranscriptional reprogrammingtranscriptometranscriptomic profilingtranscriptomicswhole genome
项目摘要
PROJECT SUMMARY
The reprogramming of somatic human cells to induced pluripotent stem cells (iPSCs) by only four transcription
factors (TFs) Oct4, Sox2, Klf4, and cMyc (OSKM) is one of the most striking remodelings of gene regulatory
networks. The remarkable ability of OSKM to reprogram diverse somatic cell types into iPSCs that are
functionally indistinguishable from embryonic stem cells indicates that OSKM leverages a fundamental
mechanism for network remodeling that may be generally applicable to all cell fate transitions. Previous studies
of reprogramming have identified the crucial role of cooperative TF binding in repressing somatic programs and
activating pluripotent ones. However, associating TF binding dynamics and epigenomic remodeling with key
bifurcation events during reprogramming is confounded by the highly heterogeneous nature of the
reprogramming process and the lack of knowledge regarding how the transition from somatic to pluripotent
regulatory programs occurs in individual cells. In this project, we aim to model the regulatory network underlying
the cell fate change of reprogramming using three types of single-cell multi-omic profiles generated from critical
time points during reprogramming. We will interrogate the network leveraging natural perturbation of
reprogramming and pluripotency by genetic variants. Genetic variation is well known to modulate the regulatory
network of pluripotency and contributes to the variability of cellular phenotypes and differentiation capacity of
iPSC lines. We will generate population-scale single-cell joint profiling of RNA and DNA methylation (snmCT-
seq), joint profiling of RNA and chromatin accessibility (scRNA + ATAC-seq) and single-nucleus joint profiling of
chromatin conformation and DNA methylation (sn-m3C-seq), allowing the cell-type-specific determination of
transcriptome, chromatin accessibility and methylation states at regulatory elements, as well as enhancer-gene
looping to connect non-coding variants to their regulatory target. To integrate OSKM binding with the single-cell
transcriptomic and epigenomic dynamics, we will determine the allele-specific binding of TFs and histone
modifications using a pooled-alleles ChIP-seq strategy. We will use Dynamic Regulatory Events Miner (DREM)
to construct predictive models by integrating transcription factor-gene interaction information with time- and
pseudotime-series genomics data. To determine the genetic regulation of the reprogramming network, we will
apply the novel statistical method FastGxE to distinguish cell-type-specific from the shared genetic component
of gene expression regulation, to enhance the sensitivity for identifying cell-type-specific quantitative trait loci
(QTLs). To test the regulatory network, we will experimentally determine the function of network hub genes and
non-coding variants using high-throughput CRISPR interference and precise variant replacement experiments.
Our proposed project integrates diverse approaches including single-cell multi-omics, computational modeling,
and genetic engineering, and will likely provide new insights into the mechanism by which TFs remodel regulatory
networks of cell type identity and serve as a model for similar analyses in other systems.
项目概要
仅通过四个转录即可将人类体细胞重编程为诱导多能干细胞(iPSC)
因子 (TF) Oct4、Sox2、Klf4 和 cMyc (OSKM) 是基因调控最引人注目的重塑之一
网络。 OSKM 将多种体细胞类型重编程为 iPSC 的卓越能力
与胚胎干细胞在功能上无法区分,这表明 OSKM 利用了一种基本的
网络重塑机制可能普遍适用于所有细胞命运转变。之前的研究
重编程的研究人员已经确定了协同转录因子结合在抑制体细胞程序中的关键作用
激活多能细胞。然而,将 TF 结合动力学和表观基因组重塑与关键
重编程期间的分岔事件因高度异质性而混淆
重编程过程以及缺乏关于如何从体细胞向多能转变的知识
调节程序发生在单个细胞中。在这个项目中,我们的目标是对底层的监管网络进行建模
使用从关键生成的三种类型的单细胞多组学概况进行重编程的细胞命运变化
重新编程期间的时间点。我们将利用自然扰动来询问网络
通过遗传变异进行重编程和多能性。众所周知,遗传变异可以调节调节
多能性网络并有助于细胞表型的变异性和分化能力
iPSC 线。我们将生成群体规模的 RNA 和 DNA 甲基化联合分析 (snmCT-
seq)、RNA 和染色质可及性的联合分析(scRNA + ATAC-seq)以及单核联合分析
染色质构象和 DNA 甲基化 (sn-m3C-seq),允许细胞类型特异性测定
转录组、染色质可及性和调节元件的甲基化状态以及增强子基因
循环将非编码变体与其监管目标连接起来。将 OSKM 结合与单细胞集成
转录组和表观基因组动力学,我们将确定 TF 和组蛋白的等位基因特异性结合
使用混合等位基因 ChIP-seq 策略进行修改。我们将使用动态监管事件矿工(DREM)
通过将转录因子-基因相互作用信息与时间和时间相结合来构建预测模型
伪时间序列基因组数据。为了确定重编程网络的遗传调控,我们将
应用新颖的统计方法 FastGxE 来区分细胞类型特异性和共享遗传成分
基因表达调控,提高识别细胞类型特异性数量性状位点的灵敏度
(QTL)。为了测试调控网络,我们将通过实验确定网络枢纽基因的功能和
使用高通量 CRISPR 干扰和精确的变体替换实验来检测非编码变体。
我们提出的项目整合了多种方法,包括单细胞多组学、计算建模、
和基因工程,并可能为 TF 重塑监管机制提供新的见解
细胞类型识别网络,并作为其他系统中类似分析的模型。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongyuan Luo其他文献
Chongyuan Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongyuan Luo', 18)}}的其他基金
Spatiotemporal epigenomic and chromosomal architectural cell atlas of developing human brains
人类大脑发育的时空表观基因组和染色体结构细胞图谱
- 批准号:
10689124 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
Spatiotemporal epigenomic and chromosomal architectural cell atlas of developing human brains
人类大脑发育的时空表观基因组和染色体结构细胞图谱
- 批准号:
10523974 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
In situ Single-Cell Multi-Omic and Morphological Profiling in Mammalian Brains
哺乳动物大脑的原位单细胞多组学和形态学分析
- 批准号:
10506297 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10582712 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10407453 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10116997 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
- 批准号:
10473738 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
- 批准号:
10297764 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 135.13万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists