F-BAR proteins in neuronal migration and process formation
F-BAR 蛋白在神经元迁移和过程形成中的作用
基本信息
- 批准号:10659120
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Actin-Binding ProteinActinsAddressAffectAxonBindingBrainCRISPR/Cas technologyCell membraneCell physiologyCellsCerebral cortexCuriositiesCytoskeletonDataDendritesDestinationsDevelopmentElectroporationEndocytic VesicleEndocytosisEndocytosis InductionEventFamilyFamily memberFilopodiaHuntington DiseaseImmunoprecipitationLabelLinkMalignant NeoplasmsMammalian CellMass Spectrum AnalysisMembraneMicrofilamentsMicrotubulesMolecularMorphologyMusNerve DegenerationNervous System PhysiologyNeuritesNeuronsPatternPeripheralPlayPolymersPositioning AttributeProcessProtein FamilyProteinsPublishingRNA SplicingReagentReporterResearchRoleSet proteinSignal PathwayStructureTRIP10 geneTechniquesTestingVariantVesicleWorkcell typedesigndimerdosageexperimental studyhuman diseasein uteroin vivoinsightinternal controlknock-downmigrationnervous system developmentneuron developmentneuronal replacementnovelnovel strategiesoverexpressionpolymerizationprotein functionrho GTP-Binding Proteins
项目摘要
Breaking neuronal symmetry is a fundamental process in the formation of a polarized neuron. Neurons in the
developing cerebral cortex are born as spherical cells that must extend leading and trailing processes to migrate
to their destination in the developing cortical plate. Cortical neurons then extend long axons and dendrites from
these processes to create functional circuits. Cortical neuron migration and process extension is critically
dependent on the microtubule and actin cytoskeleton, but relatively little is known about how the actin cytoskeleton
and plasma membrane are coordinated during these events. Membrane protrusion and invagination are
fundamental cellular activities that require coordination of the plasma membrane and underlying actin cytoskeleton.
However, there is a dearth of data on how membrane protrusion and invagination are integrated in process
outgrowth and neuronal migration. The F-BAR superfamily of proteins are involved in membrane curvature sensing
and deformation through their F-BAR domain, positioning them as potentially important players in both membrane
invagination and protrusion. Structurally, they form a curved dimer that self-multimerizes around endocytic
vesicles, causing their elongation into tubules. The CIP4 family of proteins (CIP4, FBP17 and TOCA1) is a group
of F-BAR proteins that bind actin-associated proteins. Like other F-BAR proteins, the CIP4 family is thought to
function primarily in membrane invagination and endocytosis, but our recent work has implicated CIP4 in neuronal
membrane protrusion as well. Lamellipodial-like protrusions induced by CIP4 strongly inhibit neurite outgrowth in
culture. Conversely, we find that a close family member, FBP17, forms endocytic tubules in developing cortical
neurons and promotes prominent filopodia formation, resulting in precocious neurite outgrowth. In this proposal we
will test the novel hypothesis that protrusion through CIP4 and invagination through FBP17 act in opposing
manners to regulate cortical neuron migration and process formation in the developing cortex. Specifically, we will:
1) Determine how CIP4 induces membrane protrusions and FBP17 forms endocytic tubules, 2) Establish how
membrane tubulation results in precocious filopodia formation and neurite outgrowth, 3) Reveal the spatial and
temporal expression pattern of endogenously-labeled CIP4 and FBP17 in mouse lines and 4) Resolve CIP4 and
FBP17 function in cortical development in vivo. This work will provide fundamental insights into how proteins that
bridge the membrane and actin cytoskeleton function to regulate process outgrowth and cortical neuron migration
in the early developing mammalian brain. CIP4 and FBP17 have been implicated in Huntington's disease and
several forms of cancer, underscoring the importance of determining the function of these proteins in the developing
cerebral cortex.
打破神经元对称性是极化神经元形成的基本过程。神经元在
发育中的大脑皮层天生是球形细胞,必须延伸前导过程和尾随过程才能迁移
到达正在发育的皮质板中的目的地。然后皮质神经元从
这些过程创建功能电路。皮质神经元迁移和过程扩展至关重要
依赖于微管和肌动蛋白细胞骨架,但对于肌动蛋白细胞骨架如何
和质膜在这些事件期间协调。膜突出和内陷是
需要质膜和底层肌动蛋白细胞骨架协调的基本细胞活动。
然而,缺乏关于膜突出和内陷如何在过程中整合的数据
生长和神经元迁移。 F-BAR 蛋白质超家族参与膜曲率传感
和通过其 F-BAR 域变形,将它们定位为两种膜中潜在的重要参与者
内陷和突出。在结构上,它们形成弯曲的二聚体,围绕内吞进行自多聚化
囊泡,导致它们伸长成小管。 CIP4 蛋白家族(CIP4、FBP17 和 TOCA1)是一组
结合肌动蛋白相关蛋白的 F-BAR 蛋白。与其他 F-BAR 蛋白一样,CIP4 家族被认为
主要在膜内陷和内吞作用中发挥作用,但我们最近的工作表明 CIP4 在神经元中发挥作用
膜突出也。 CIP4 诱导的片状伪足样突起强烈抑制神经突的生长
文化。相反,我们发现一个亲密的家族成员 FBP17 在发育中的皮质中形成内吞小管
神经元并促进显着的丝状伪足形成,导致神经突过早生长。在这个提案中我们
将测试新的假设,即通过 CIP4 的突出和通过 FBP17 的内陷起到相反的作用
调节发育中皮层中皮层神经元迁移和过程形成的方式。具体来说,我们将:
1) 确定 CIP4 如何诱导膜突出和 FBP17 形成内吞小管,2) 确定如何
膜管导致早熟丝状伪足形成和神经突生长,3)揭示空间和
小鼠品系中内源标记的 CIP4 和 FBP17 的时间表达模式以及 4) 解析 CIP4 和
FBP17 在体内皮质发育中发挥作用。这项工作将为蛋白质如何
连接膜和肌动蛋白细胞骨架功能,调节过程生长和皮质神经元迁移
在早期发育的哺乳动物大脑中。 CIP4 和 FBP17 与亨廷顿舞蹈病有关
多种形式的癌症,强调确定这些蛋白质在发育中的功能的重要性
大脑皮层。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contributions of microtubule dynamics and transport to presynaptic and postsynaptic functions.
- DOI:10.1016/j.mcn.2022.103787
- 发表时间:2022-12
- 期刊:
- 影响因子:3.5
- 作者:Miryala, Chandra S. J.;Holland, Elizabeth D.;Dent, Erik W.
- 通讯作者:Dent, Erik W.
A Methodology for Specific Disruption of Microtubules in Dendritic Spines.
树突棘微管特异性破坏的方法。
- DOI:10.1101/2024.03.04.583370
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Holland,ElizabethD;Miller,HannahL;Millette,MatthewM;Taylor,RussellJ;Drucker,GabrielleL;Dent,ErikW
- 通讯作者:Dent,ErikW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik W Dent其他文献
Erik W Dent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik W Dent', 18)}}的其他基金
F-BAR proteins in neuronal migration and process formation
F-BAR 蛋白在神经元迁移和过程形成中的作用
- 批准号:
10453584 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
F-BAR proteins in neuronal migration and process formation
F-BAR 蛋白在神经元迁移和过程形成中的作用
- 批准号:
10317364 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Role of F-BAR proteins in neuronal development
F-BAR 蛋白在神经元发育中的作用
- 批准号:
9039494 - 财政年份:2013
- 资助金额:
$ 38.88万 - 项目类别:
Role of F-BAR proteins in neuronal development
F-BAR 蛋白在神经元发育中的作用
- 批准号:
8579390 - 财政年份:2013
- 资助金额:
$ 38.88万 - 项目类别:
Role of F-BAR proteins in neuronal development
F-BAR 蛋白在神经元发育中的作用
- 批准号:
9268087 - 财政年份:2013
- 资助金额:
$ 38.88万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 38.88万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 38.88万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 38.88万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 38.88万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 38.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 38.88万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 38.88万 - 项目类别:














{{item.name}}会员




