Engineering the Neuronal Response to Electrical Microstimulation
设计神经元对电微刺激的反应
基本信息
- 批准号:10661509
- 负责人:
- 金额:$ 109.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAffectAreaAxonBehavioralBrainChargeChronicClinicalCommunitiesComputer ModelsComputer softwareDependenceDiffuse PatternDimensionsElectric StimulationElectrodesElectrolytesElectrophysiology (science)ElementsEncapsulatedEngineeringEvaluationForeign BodiesGene ExpressionGeometryGoalsGuidelinesHumanImmediate-Early GenesIndividualInjectionsInjuryLeadMeasurementMethodsMicroelectrodesMissionModelingModernizationNervous SystemNeuronsNeurosciencesNon-linear ModelsOutcomeOutcome AssessmentPerformancePhysiologicalPresynaptic TerminalsReportingResearchResolutionSalineSamplingSeminalStructureSurfaceTechnologyTestingTissuesUnited States National Institutes of HealthUpdateWorkbehavior measurementdensitydesigndisabilitydynamic systemelectric fieldelectrical microstimulationempowermentfabricationhuman diseasein vivoinnovationmanufacturing technologymetermicrostimulationneuralneuroprosthesisneuroregulationnovelnovel strategiespredictive modelingresponsetemporal measurementtooluser-friendly
项目摘要
PROJECT SUMMARY/ABSTRACT
Our proposed efforts align directly with a goal of RFA-NS-18-019: optimization of transformative technologies for modulation in the nervous system. Specifically, we seek to optimize microelectrode arrays (MEAs) and ultra-microelectrode arrays (UMEAs) for large-scale circuit manipulation that will control neural activity at cellular resolution with high temporal resolution. Our goals are to 1) advance CNS MEA and UMEA electrical microstimulation by testing the separate hypotheses that MEAs and UMEAs can deliver safe, effective levels of cortical electrical stimulation and 2) advance research by generating transformative tools and technologies that will be widely used throughout the research community. Here we propose combining computational modeling, engineering optimization, and in vivo measurement to address these challenges and produce advances in microstimulation and tools for the community. Our Aims are to 1) engineer approaches to non-damaging charge, 2) engineer approaches to enable selective and graded activation of targeted neural elements, and 3) document the performance of the innovations from Aim 1 and Aim 2. via an outstanding team working together to address this interdisciplinary problem, our innovative approach will result in 1) models to deliver non- damaging currents from MEAs and UMEAs; 2) evaluation of the models to optimize MEA and UMEA design for microstimulation; and 3) experimental assessment of the outcomes of our designs, both within our team and with our collaborators. Our transformative results will lead to model-based optimization of reliable and high-fidelity multichannel microstimulation technologies enabling sustainable, broad dissemination and user-friendly incorporation into regular neuroscience practice.
项目概要/摘要
我们提出的努力与 RFA-NS-18-019 的目标直接一致:优化神经系统调节的变革技术。具体来说,我们寻求优化微电极阵列(MEA)和超微电极阵列(UMEA)以进行大规模电路操作,从而以高时间分辨率在细胞分辨率下控制神经活动。我们的目标是 1) 通过测试 MEA 和 UMEA 可以提供安全、有效水平的皮层电刺激的单独假设来推进 CNS MEA 和 UMEA 电微刺激;2) 通过生成将在整个研究界广泛使用的变革性工具和技术来推进研究。在这里,我们建议结合计算建模、工程优化和体内测量来应对这些挑战,并为社区带来微刺激和工具的进步。我们的目标是 1) 设计非破坏性电荷的方法,2) 设计能够选择性和分级激活目标神经元件的方法,以及 3) 记录目标 1 和目标 2 的创新性能。通过优秀的团队共同努力解决这一跨学科问题,我们的创新方法将产生 1) 从 MEA 和 UMEA 提供非破坏性电流的模型; 2) 评估模型以优化微刺激的 MEA 和 UMEA 设计; 3)在我们的团队内部和与我们的合作者一起对我们的设计结果进行实验评估。我们的变革性成果将导致基于模型的可靠和高保真多通道微刺激技术的优化,从而实现可持续、广泛传播并以用户友好的方式融入常规神经科学实践中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark E. Orazem其他文献
Measurement model for analysis of electrochemical impedance data
- DOI:
10.1007/s10008-023-05755-9 - 发表时间:
2023-11-23 - 期刊:
- 影响因子:2.600
- 作者:
Mark E. Orazem - 通讯作者:
Mark E. Orazem
Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics
盐水滴下纯铁的局部电化学特性II:局部腐蚀动力学
- DOI:
10.1016/j.electacta.2020.136631 - 发表时间:
2020-09 - 期刊:
- 影响因子:6.6
- 作者:
Xiao Tang;Chao Ran Ma;Mark E. Orazem;Chen You;Yan Li - 通讯作者:
Yan Li
Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics
- DOI:
doi.org/10.1016/j.electacta.2020.136631 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Xiao Tang;Chao Ran Ma;Mark E. Orazem;Chen You;Yan Li - 通讯作者:
Yan Li
Local electrochemical characteristics of pure iron under a saline droplet I: Effect of droplet size on electrochemical distribution
- DOI:
https://doi.org/10.1016/j.electacta.2020.136633 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Xiao Tang;Chao Ran Ma;Mark E. Orazem;Chen You;Yan Li - 通讯作者:
Yan Li
Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics
- DOI:
https://doi.org/10.1016/j.electacta.2020.136631 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Xiao Tang;Chao Ran Ma;Mark E. Orazem;Chen You;Yan Li - 通讯作者:
Yan Li
Mark E. Orazem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark E. Orazem', 18)}}的其他基金
Engineering the Neuronal Response to Electrical Microstimulation
设计神经元对电微刺激的反应
- 批准号:
10401586 - 财政年份:2022
- 资助金额:
$ 109.26万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 109.26万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 109.26万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 109.26万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 109.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 109.26万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 109.26万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 109.26万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 109.26万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 109.26万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 109.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




