Genetic Epidemiology of Sleep Apnea and Comorbidities in Biobanks

生物样本库中睡眠呼吸暂停和合并症的遗传流行病学

基本信息

  • 批准号:
    10670187
  • 负责人:
  • 金额:
    $ 73.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-16 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Sleep apnea (SA) and insomnia are the two most common sleep disorders, and both contribute individually and jointly to the risk of cardiopulmonary, metabolic, and psychiatric diseases. Despite their high prevalence, treatments for SA and insomnia remain suboptimal. SA and insomnia are thought to be comprised of distinct subtypes, which remain poorly defined and may contribute to differing risks for health outcomes. Our goal is to use machine learning to apply precise phenotyping to biobanks to identify the genetic bases of SA and insomnia and discover SA and insomnia subtypes based on genetics and comorbidities in order to reduce phenotype heterogeneity, guide patient stratification and aid in the discovery of more personalized treatments. Our approach is to combine health care system biobank data with research polysomnography (PSG) to achieve statistical power to discover genetic variants for SA and insomnia-related phenotypes and characterize their associated clinical outcomes and endophenotypes (physiological mechanisms). We will use advanced natural language processing (NLP) methods to substantially improve the accuracy of SA and insomnia phenotyping. Our anticipated sample size will be >11-fold larger than prior genetic studies of SA, providing the necessary statistical power for genetic discovery. Polygenic risk scores derived from our results can be used to quantify sleep disorder risk, even among those without sleep phenotypes. Machine learning methods can identify predictors of diagnosis-clustered patient groups contained within the medical record. Precision deeply- phenotyped PSG data (eg hypoxic burden) can characterize endophenotypes at associated genetic loci using genetic localization. We will derive advanced SA and insomnia phenotypes robust to demographic differences across biobank sites, perform the largest genetic analysis of validated SA and insomnia phenotypes to date, characterize novel loci, and study associations with clinical diagnosis data to improve patient classification in three biobanks. We will explore sex-specific associations and validate lead genetic associations in two biobanks. Our specific aims are: 1) to construct advanced SA and insomnia phenotying algorithms across diverse demographic groups and sites; 2) to identify and characterize the genetic associations with SA and insomnia; and 3) to identify and characterize distinct SA and insomnia patient subgroups based on related comorbidity profiles. The proposed project has a goal of improving the treatment of heart, lung, blood, and sleep disorders by potentially resolving disease heterogeneity, discovering novel genetic associations with sleep disorders, and helping to clarify the overlap of SA and insomnia with cardiopulmonary, metabolic, and psychiatric disease.
摘要 睡眠呼吸暂停(SA)和失眠是两种最常见的睡眠障碍,两者都是单独造成的, 共同导致心肺、代谢和精神疾病的风险。尽管其发病率很高, SA和失眠症的治疗仍不理想。SA和失眠被认为是由不同的 亚型,这些亚型仍然定义不清,可能导致健康结果的不同风险。我们的目标是 使用机器学习对生物库进行精确的表型分析,以确定SA的遗传基础, 根据遗传学和合并症发现SA和失眠亚型,以减少 表型异质性,指导患者分层,并帮助发现更个性化的治疗。 我们的方法是将联合收割机医疗保健系统生物库数据与研究性多导睡眠图(PSG)相结合, 发现SA和失眠相关表型的遗传变异并表征其特征的统计能力 相关的临床结果和内在表型(生理机制)。我们将使用先进的自然 语言处理(NLP)方法,以大大提高SA和失眠表型的准确性。 我们预期的样本量将比之前的SA遗传研究大11倍,提供必要的信息。 基因发现的统计力量从我们的研究结果得出的多基因风险评分可用于量化 睡眠障碍风险,即使在那些没有睡眠表型的人中。机器学习方法可以识别 包含在医疗记录内的诊断聚类患者组的预测因子。精准深入- 表型PSG数据(例如低氧负荷)可以使用以下方法表征相关遗传基因座的内表型: 基因定位我们将得出先进的SA和失眠表型强大的人口统计学差异 跨生物库站点,对迄今为止验证的SA和失眠表型进行最大规模的遗传分析, 表征新的基因座,并研究与临床诊断数据的关联,以改善患者分类, 三个生物银行我们将探讨性别特异性协会和验证铅遗传协会在两个生物库。 我们的具体目标是:1)在不同的领域构建先进的SA和失眠表型算法 2)确定和描述SA和失眠症的遗传关联; 以及3)基于相关的共病来识别和表征不同的SA和失眠患者亚组 数据区.该项目的目标是改善心脏、肺、血液和睡眠障碍的治疗 通过潜在地解决疾病异质性,发现与睡眠障碍的新的遗传关联, 有助于澄清SA和失眠与心肺、代谢和精神疾病的重叠。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sleep apnea phenotyping and relationship to disease in a large clinical biobank.
  • DOI:
    10.1093/jamiaopen/ooab117
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Cade BE;Hassan SM;Dashti HS;Kiernan M;Pavlova MK;Redline S;Karlson EW
  • 通讯作者:
    Karlson EW
Pathway-Specific Polygenic Risk Scores Identify Obstructive Sleep Apnea-Related Pathways Differentially Moderating Genetic Susceptibility to Coronary Artery Disease.
  • DOI:
    10.1161/circgen.121.003535
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Goodman, Matthew O.;Cade, Brian E.;Shah, Neomi A.;Huang, Tianyi;Dashti, Hassan S.;Saxena, Richa;Rutter, Martin K.;Libby, Peter;Sofer, Tamar;Redline, Susan
  • 通讯作者:
    Redline, Susan
Incident cardiovascular disease risk prediction using extensive oximetry patterns.
  • DOI:
    10.1093/sleep/zsac230
  • 发表时间:
    2022-12-12
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Edmand Cade其他文献

Brian Edmand Cade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Edmand Cade', 18)}}的其他基金

Genetic Epidemiology of Sleep Apnea and Comorbidities in Biobanks
生物样本库中睡眠呼吸暂停和合并症的遗传流行病学
  • 批准号:
    10211082
  • 财政年份:
    2021
  • 资助金额:
    $ 73.87万
  • 项目类别:
Genetic Epidemiology of Sleep Apnea and Comorbidities in Biobanks
生物样本库中睡眠呼吸暂停和合并症的遗传流行病学
  • 批准号:
    10470170
  • 财政年份:
    2021
  • 资助金额:
    $ 73.87万
  • 项目类别:
Identifying Contributions of Pulmonary Inflammation to Sleep-Disordered Breathing
确定肺部炎症对睡眠呼吸障碍的影响
  • 批准号:
    10254316
  • 财政年份:
    2020
  • 资助金额:
    $ 73.87万
  • 项目类别:
Identifying Contributions of Pulmonary Inflammation to Sleep-Disordered Breathing
确定肺部炎症对睡眠呼吸障碍的影响
  • 批准号:
    10064441
  • 财政年份:
    2020
  • 资助金额:
    $ 73.87万
  • 项目类别:
Whole Genomic Characterization of Sleep Apnea Traits and Comorbid Disorders
睡眠呼吸暂停特征和共病疾病的全基因组特征
  • 批准号:
    9224502
  • 财政年份:
    2017
  • 资助金额:
    $ 73.87万
  • 项目类别:
Whole Genomic Characterization of Sleep Apnea Traits and Comorbid Disorders
睡眠呼吸暂停特征和共病疾病的全基因组特征
  • 批准号:
    9926089
  • 财政年份:
    2017
  • 资助金额:
    $ 73.87万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
  • 批准号:
    DP240100300
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
  • 批准号:
    2346286
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
  • 批准号:
    2348755
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
  • 批准号:
    24K05127
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
  • 批准号:
    DP240101848
  • 财政年份:
    2024
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Discovery Projects
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2313738
  • 财政年份:
    2023
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant New Mexico State University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 新墨西哥州立大学:航空大数据分析中心 [ABDA]
  • 批准号:
    2231654
  • 财政年份:
    2023
  • 资助金额:
    $ 73.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了