Genetic Epidemiology of Sleep Apnea and Comorbidities in Biobanks

生物样本库中睡眠呼吸暂停和合并症的遗传流行病学

基本信息

  • 批准号:
    10470170
  • 负责人:
  • 金额:
    $ 73.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-16 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Sleep apnea (SA) and insomnia are the two most common sleep disorders, and both contribute individually and jointly to the risk of cardiopulmonary, metabolic, and psychiatric diseases. Despite their high prevalence, treatments for SA and insomnia remain suboptimal. SA and insomnia are thought to be comprised of distinct subtypes, which remain poorly defined and may contribute to differing risks for health outcomes. Our goal is to use machine learning to apply precise phenotyping to biobanks to identify the genetic bases of SA and insomnia and discover SA and insomnia subtypes based on genetics and comorbidities in order to reduce phenotype heterogeneity, guide patient stratification and aid in the discovery of more personalized treatments. Our approach is to combine health care system biobank data with research polysomnography (PSG) to achieve statistical power to discover genetic variants for SA and insomnia-related phenotypes and characterize their associated clinical outcomes and endophenotypes (physiological mechanisms). We will use advanced natural language processing (NLP) methods to substantially improve the accuracy of SA and insomnia phenotyping. Our anticipated sample size will be >11-fold larger than prior genetic studies of SA, providing the necessary statistical power for genetic discovery. Polygenic risk scores derived from our results can be used to quantify sleep disorder risk, even among those without sleep phenotypes. Machine learning methods can identify predictors of diagnosis-clustered patient groups contained within the medical record. Precision deeply- phenotyped PSG data (eg hypoxic burden) can characterize endophenotypes at associated genetic loci using genetic localization. We will derive advanced SA and insomnia phenotypes robust to demographic differences across biobank sites, perform the largest genetic analysis of validated SA and insomnia phenotypes to date, characterize novel loci, and study associations with clinical diagnosis data to improve patient classification in three biobanks. We will explore sex-specific associations and validate lead genetic associations in two biobanks. Our specific aims are: 1) to construct advanced SA and insomnia phenotying algorithms across diverse demographic groups and sites; 2) to identify and characterize the genetic associations with SA and insomnia; and 3) to identify and characterize distinct SA and insomnia patient subgroups based on related comorbidity profiles. The proposed project has a goal of improving the treatment of heart, lung, blood, and sleep disorders by potentially resolving disease heterogeneity, discovering novel genetic associations with sleep disorders, and helping to clarify the overlap of SA and insomnia with cardiopulmonary, metabolic, and psychiatric disease.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Edmand Cade其他文献

Brian Edmand Cade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Edmand Cade', 18)}}的其他基金

Genetic Epidemiology of Sleep Apnea and Comorbidities in Biobanks
生物样本库中睡眠呼吸暂停和合并症的遗传流行病学
  • 批准号:
    10211082
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
Genetic Epidemiology of Sleep Apnea and Comorbidities in Biobanks
生物样本库中睡眠呼吸暂停和合并症的遗传流行病学
  • 批准号:
    10670187
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
Identifying Contributions of Pulmonary Inflammation to Sleep-Disordered Breathing
确定肺部炎症对睡眠呼吸障碍的影响
  • 批准号:
    10254316
  • 财政年份:
    2020
  • 资助金额:
    $ 73.39万
  • 项目类别:
Identifying Contributions of Pulmonary Inflammation to Sleep-Disordered Breathing
确定肺部炎症对睡眠呼吸障碍的影响
  • 批准号:
    10064441
  • 财政年份:
    2020
  • 资助金额:
    $ 73.39万
  • 项目类别:
Whole Genomic Characterization of Sleep Apnea Traits and Comorbid Disorders
睡眠呼吸暂停特征和共病疾病的全基因组特征
  • 批准号:
    9224502
  • 财政年份:
    2017
  • 资助金额:
    $ 73.39万
  • 项目类别:
Whole Genomic Characterization of Sleep Apnea Traits and Comorbid Disorders
睡眠呼吸暂停特征和共病疾病的全基因组特征
  • 批准号:
    9926089
  • 财政年份:
    2017
  • 资助金额:
    $ 73.39万
  • 项目类别:

相似海外基金

Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
  • 批准号:
    RGPIN-2020-06792
  • 财政年份:
    2022
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2022
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2022
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
  • 批准号:
    RGPIN-2022-02948
  • 财政年份:
    2022
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
  • 批准号:
    RGPIN-2017-05617
  • 财政年份:
    2022
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
  • 批准号:
    2203524
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
  • 批准号:
    RGPIN-2020-06792
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
  • 批准号:
    21K12034
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
  • 批准号:
    571110-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
  • 批准号:
    RGPIN-2017-05617
  • 财政年份:
    2021
  • 资助金额:
    $ 73.39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了