Data Science Core
数据科学核心
基本信息
- 批准号:10669680
- 负责人:
- 金额:$ 59.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsArchitectureAreaBehaviorBehavioralBrainCalciumCellsCollaborationsCommunicationCommunitiesDataData AnalysesData ScienceData Science CoreData SetDecision MakingDevelopmentGenomicsGoalsHistologyImageInfrastructureInternationalInternational AspectsLaboratoriesLearningMapsMetadataMethodsModelingNeuronsNeurosciencesOccupational activity of managing financesProcessReproducibilityResearch PersonnelResourcesServicesSortingTask PerformancesTestingUltrasonographyWorkcomputational neurosciencedata exchangedata managementdata pipelinedata science resourcedata standardsdata toolsexperimental studyimprovedin situ sequencinglaboratory developmentmethod developmentneuralneural circuitneurophysiologyopen dataopen sourceopen source tooloptical imagingoptogeneticsplatform as a servicestatisticstheoriestool
项目摘要
Summary/Abstract (Data Science Core B)
This project—and the International Brain Laboratory (IBL) more generally—represents a tightly closed loop of
experiment, theory, and data analysis. This loop depends critically on sophisticated, scalable, and robust data
science resources and methods. This core will provide these resources and methods.
First, this core will extend the existing IBL data architecture to handle the new datasets that will be
collected as part of this project (Aim 1). IBL already uses this data architecture daily to collect experimental data
(including behavioral video and Neuropixels recordings) and metadata; automatically preprocess and analyze
the data; automatically transfer the data to a central server; and share the results within the collaboration and
externally. This core will extend this architecture to handle the new experiments and data types (calcium imaging,
functional ultrasound imaging, optogenetic perturbations, in situ sequencing) to be pursued here.
Second, this Core will apply and refine sophisticated data-analysis algorithms directly related to the
project’s scientific goals, and serve these algorithms publicly as open-source tools to the broader community
(Aim 2). IBL already has good working pipelines in place to preprocess (spike sort) Neuropixels datasets. During
the proposed project, this core will continue to refine and improve these spike-sorting pipelines, incorporate new
pipelines to handle additional large data types (calcium imaging and in situ sequencing data) that are not
currently in place in the IBL infrastructure, and support development of methods for analyzing large-scale multi-
neuronal recordings from multiple brain areas over multiple experiments. All analytical and data-architecture
tools will be versioned, open-source, and immediately available for use and development by other laboratories.
A major synergistic aspect of IBL is that these pipelines will be heavily internally tested by many users with a
wide variety of expertise across multiple labs. These tools will also be served on the Neuroscience Cloud
Analysis as a Service platform to facilitate reproducible, easy usage. We thus expect the availability of these
new tools to have an immediate and broad impact on the field.
摘要/摘要(数据科学核心B)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liam M Paninski其他文献
Liam M Paninski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liam M Paninski', 18)}}的其他基金
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 59.39万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 59.39万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 59.39万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 59.39万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant














{{item.name}}会员




