Data Science Core
数据科学核心
基本信息
- 批准号:10669680
- 负责人:
- 金额:$ 59.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsArchitectureAreaBehaviorBehavioralBrainCalciumCellsCollaborationsCommunicationCommunitiesDataData AnalysesData ScienceData Science CoreData SetDecision MakingDevelopmentGenomicsGoalsHistologyImageInfrastructureInternationalInternational AspectsLaboratoriesLearningMapsMetadataMethodsModelingNeuronsNeurosciencesOccupational activity of managing financesProcessReproducibilityResearch PersonnelResourcesServicesSortingTask PerformancesTestingUltrasonographyWorkcomputational neurosciencedata exchangedata managementdata pipelinedata science resourcedata standardsdata toolsexperimental studyimprovedin situ sequencinglaboratory developmentmethod developmentneuralneural circuitneurophysiologyopen dataopen sourceopen source tooloptical imagingoptogeneticsplatform as a servicestatisticstheoriestool
项目摘要
Summary/Abstract (Data Science Core B)
This project—and the International Brain Laboratory (IBL) more generally—represents a tightly closed loop of
experiment, theory, and data analysis. This loop depends critically on sophisticated, scalable, and robust data
science resources and methods. This core will provide these resources and methods.
First, this core will extend the existing IBL data architecture to handle the new datasets that will be
collected as part of this project (Aim 1). IBL already uses this data architecture daily to collect experimental data
(including behavioral video and Neuropixels recordings) and metadata; automatically preprocess and analyze
the data; automatically transfer the data to a central server; and share the results within the collaboration and
externally. This core will extend this architecture to handle the new experiments and data types (calcium imaging,
functional ultrasound imaging, optogenetic perturbations, in situ sequencing) to be pursued here.
Second, this Core will apply and refine sophisticated data-analysis algorithms directly related to the
project’s scientific goals, and serve these algorithms publicly as open-source tools to the broader community
(Aim 2). IBL already has good working pipelines in place to preprocess (spike sort) Neuropixels datasets. During
the proposed project, this core will continue to refine and improve these spike-sorting pipelines, incorporate new
pipelines to handle additional large data types (calcium imaging and in situ sequencing data) that are not
currently in place in the IBL infrastructure, and support development of methods for analyzing large-scale multi-
neuronal recordings from multiple brain areas over multiple experiments. All analytical and data-architecture
tools will be versioned, open-source, and immediately available for use and development by other laboratories.
A major synergistic aspect of IBL is that these pipelines will be heavily internally tested by many users with a
wide variety of expertise across multiple labs. These tools will also be served on the Neuroscience Cloud
Analysis as a Service platform to facilitate reproducible, easy usage. We thus expect the availability of these
new tools to have an immediate and broad impact on the field.
摘要/摘要(数据科学核心B)
这个项目--更广泛地说是国际脑实验室(IBL)--代表着一个紧密闭合的环路
实验、理论和数据分析。此循环在很大程度上依赖于复杂、可扩展和健壮的数据
科学资源和方法。这个核心将提供这些资源和方法。
首先,该核心将扩展现有的IBL数据体系结构,以处理将
作为本项目(目标1)的一部分收集。IBL已经每天使用这种数据架构来收集实验数据
(包括行为视频和神经像素记录)和元数据;自动进行预处理和分析
数据;自动将数据传输到中央服务器;并在协作和
从外部来说。该核心将扩展该体系结构以处理新的实验和数据类型(钙成像,
功能超声成像、光遗传学扰动、原位测序)将在这里进行。
其次,这一核心将应用和改进直接与
项目的科学目标,并将这些算法作为开源工具公开提供给更广泛的社区
(目标2)。IBL已经有了很好的工作管道来对神经像素数据集进行预处理(尖峰排序)。在.期间
拟议的项目,这个核心将继续精炼和改进这些尖峰分选管道,纳入新的
用于处理其他大型数据类型(钙成像和原位测序数据)的管道
目前在IBL基础设施中已到位,并支持开发分析大规模多个
多个实验中来自多个大脑区域的神经元记录。所有分析和数据架构
工具将是版本化的、开源的,并立即可供其他实验室使用和开发。
IBL的一个主要协同方面是,这些管道将由许多用户进行大量内部测试,
跨多个实验室的各种专业知识。这些工具也将在神经科学云上提供服务
分析即服务平台,便于重复使用。因此,我们期待着这些产品的供应
新的工具对该领域产生直接和广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liam M Paninski其他文献
Liam M Paninski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liam M Paninski', 18)}}的其他基金
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 59.39万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 59.39万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 59.39万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 59.39万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 59.39万 - 项目类别:
Standard Grant














{{item.name}}会员




