Next-Generation Calcium Imaging Analysis Methods
下一代钙成像分析方法
基本信息
- 批准号:9536014
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBRAIN initiativeBehavioralBig DataBrainCalciumCellsCommunitiesCommunity DevelopmentsComputing MethodologiesDataData CollectionData SetDendritesDevelopmentDimensionsDreamsDrowningEventFutureGeneticGoalsHourImageImage AnalysisLightLiteratureLocationManualsMeasuresMethodsMicroscopyModelingModernizationMotionMotivationMusNeuronsNeurosciencesOpticsOutputPerformanceRecoveryResolutionShapesSignal TransductionSomatosensory CortexStatistical ModelsStimulusStructureTechniquesTechnologyTimeTreesZebrafishanalytical toolexperimental studyextracellularhigh resolution imagingimaging modalityimprovedmicroscopic imagingmulti-electrode arraysnext generationnovelnovel strategiesprototyperelating to nervous systemscale upspatiotemporaltemporal measurementterabytetool
项目摘要
Project Summary
Calcium imaging methods allow us to record the simultaneous activity of many neurons with single-cell
resolution; these methods are therefore a critical enabling tool for the BRAIN initiative and in neuroscience
more broadly. These experiments produce enormous 2D or 3D video datasets – in some cases with data rates
measured in terabytes/hour - and the analysis of this “big data” currently represents a major bottleneck on
scientific progress in this field. This project develops powerful new analysis methods for eliminating this
bottleneck, opening up new scientific questions and applications that can be attacked with these new tools.
The methods under development simultaneously identify the locations of the imaged neurons, resolve spatially
overlapping neuronal shapes, and provide denoised estimates of the activity of each neuron, with minimal
manual parameter tuning. The new methods quantitatively and qualitatively improve upon the state of the art
in both simulated data and in a wide variety of real data applications, leading to the recovery of useful signals
from many more neurons than otherwise possible. At the same time, the methods are computationally
scalable and modular, enabling a healthy user and development community. Finally, the methods are
extensible: they are founded on well-defined probabilistic modeling and convex optimization principles,
enabling a range of extensions to address important new scientific problems.
Specific aims of the project include a number of critical subprojects focused on: first, scaling up these methods
to handle very large data sets, as computationally efficiently as possible, to enable closed-loop, real-time
experiments; and second, strengthening the methods to obtain statistically optimal solutions, in order to extract
as much information from the data as possible, with the highest possible spatiotemporal resolution, enabling
the development of novel integrated computational imaging methods. In parallel, this project will develop
extensions of these methods to handle different data types: spatially blurred data, or data formed via some
more complicated linear imaging transformation (e.g., from light-field cameras); imaging data in which we can
constrain and improve our results by exploiting simultaneously-recorded stimulus or behavioral information;
and finally, imaging data recorded simultaneously with high-temporal-resolution multielectrode electrical data,
in order to combine the strengths of these two data types.
The proposed analytical tools will be widely used in the neuroscience community, and will have a strong
influence on fundamental approaches to understanding neuroscience data; furthermore, the project will inform
experimental paradigms and drive future data collection.
项目摘要
钙成像方法使我们能够用单细胞记录多个神经元的同时活动
解决方案;因此,这些方法是大脑倡议和神经科学的关键使能工具
更广泛地说。这些实验产生了巨大的2D或3D视频数据集-在某些情况下具有数据率
以TB/小时为单位--而对这一“大数据”的分析目前是
这一领域的科学进步。该项目开发了强大的新分析方法来消除这种情况
瓶颈,打开了可以用这些新工具攻击的新的科学问题和应用程序。
正在开发的方法同时识别成像神经元的位置,在空间上解析
重叠的神经元形状,并提供每个神经元活动的去噪估计,最小
手动参数调整。新的方法在数量和质量上都比最先进的方法更好
在模拟数据和各种实际数据应用中,导致有用信号的恢复
比其他任何方式都要多得多的神经元。同时,这些方法在计算上是
可扩展和模块化,支持健康的用户和开发社区。最后,这些方法是
可扩展:它们建立在定义良好的概率建模和凸优化原则基础上,
实现了一系列扩展,以解决重要的新科学问题。
该项目的具体目标包括一些关键的子项目,重点放在:第一,扩大这些方法
在计算上尽可能高效地处理非常大的数据集,以实现实时的闭环
实验;第二,加强获得统计最优解的方法,以便提取
尽可能多地从数据中获取信息,并具有尽可能高的时空分辨率,从而实现
新的综合计算成像方法的发展。同时,这个项目将发展
对这些方法的扩展以处理不同的数据类型:空间模糊数据,或通过某些
更复杂的线性成像变换(例如,来自光场相机);成像数据,其中我们可以
通过利用同时记录的刺激或行为信息来约束和改进我们的结果;
最后,与高时间分辨率多电极电性数据同时记录的成像数据,
以结合这两种数据类型的优点。
拟议的分析工具将在神经科学界广泛使用,并将有很强的
对理解神经科学数据的基本方法的影响;此外,该项目将提供
实验范例,并推动未来的数据收集。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Spatiotemporal Organization of the Striatum Encodes Action Space.
- DOI:10.1016/j.neuron.2017.08.015
- 发表时间:2017-08-30
- 期刊:
- 影响因子:16.2
- 作者:Klaus A;Martins GJ;Paixao VB;Zhou P;Paninski L;Costa RM
- 通讯作者:Costa RM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liam M Paninski其他文献
Liam M Paninski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liam M Paninski', 18)}}的其他基金
相似海外基金
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
- 批准号:
10931180 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
- 批准号:
10931181 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS WITH THE BROAD INSTITUTE
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑计划细胞阿特拉斯网络 (BICAN) 与布罗德研究所签订测序核心合同
- 批准号:
10931182 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
REREQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE NY GENOME CENTER
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与纽约基因组中心的测序核心合同 RFP 75N95022R00031
- 批准号:
10931190 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Organoid quality control using the Brain Initiative Cell Census Network
使用 Brain Initiative Cell Census Network 进行类器官质量控制
- 批准号:
572467-2022 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
University Undergraduate Student Research Awards
BRAIN Initiative: Hierarchical Event Descriptors (HED): a system to characterize events in neurobehavioral data
BRAIN Initiative:分层事件描述符 (HED):表征神经行为数据事件的系统
- 批准号:
10480619 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
BRAINShare: Sharing Data in BRAIN Initiative Studies
BRAINShare:共享 BRAIN 计划研究中的数据
- 批准号:
10450824 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Integrative analysis of genomics and imaging data from the BRAIN Initiative and other public data sources
对来自 BRAIN Initiative 和其他公共数据源的基因组学和成像数据进行综合分析
- 批准号:
10190025 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
BRAIN Initiative: Assessing development of event-related cortical network dynamics
BRAIN Initiative:评估事件相关皮层网络动态的发展
- 批准号:
10190670 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
BRAINShare: Sharing Data in BRAIN Initiative Studies
BRAINShare:共享 BRAIN 计划研究中的数据
- 批准号:
10609523 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别: