Pre-clinical validation of 3D-printed nerve conduits for pediatric peripheral nerve repair
3D 打印神经导管用于儿科周围神经修复的临床前验证
基本信息
- 批准号:10672031
- 负责人:
- 金额:$ 63.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-27 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:18 year old3-Dimensional3D PrintAutoimmune DiseasesAutologousAutologous TransplantationBiocompatible MaterialsBiomimeticsBirthBody partBrachial plexus structureChildChildhoodClinicalCollectionCommercial gradeComputer-Aided DesignDataDefectDevicesDiabetes MellitusDiagnosticDimensionsDistalElectrophysiology (science)EngineeringEvaluationFDA approvedGelatinGenerationsGeometryGoalsGrowthHarvestHead and neck structureHumanImageImplantIn SituInfantInjuryIntelligenceLengthLower ExtremityMRI ScansMagnetic Resonance ImagingMedicalMethodsModelingMonitorMorbidity - disease rateMusNerveNerve FibersNerve RegenerationNerve TissueNeuromaNumbnessOperative Surgical ProceduresParalysedPatientsPerformancePeripheral nerve injuryPolymersPopulationPredispositionPrintingProceduresProcessPrognosisPropertyRecoveryRecovery of FunctionReportingReproducibilityResearchShapesSideSiteSourceSpecific qualifier valueSpinal cord injuryStructureSystemTechniquesTestingTherapeuticTimeTranslationsTraumaUpper ExtremityValidationVascularizationWorkaxon growthaxon regenerationbiomaterial compatibilitybioprintingclinical translationcommercializationdesigndigitalfabricationflexibilityhead/neck injuryhydrogel scaffoldimage guidedimplanted sensorinjuredinnovationloss of functionmanufacturemeetingsmeternerve damagenerve injurynerve repairneuralneural graftnonhuman primatepediatric patientsperipheral nerve repairpoly(ethylene glycol)diacrylatepre-clinicalreal time monitoringregenerativeregenerative therapyrepairedscaffoldsciatic nervesciatic nerve injurysensorsexsuccesstumorwirelesswireless sensor
项目摘要
Project Summary
Peripheral nerve injuries, as a result of trauma, tumors, or other medical conditions, require 50,000-200,000
surgeries annually, and may cause complete or partial paralysis. The autograft is the current "gold standard"
but requires additional procedures to harvest the graft, can be challenging to perform in a pediatric population,
and often leads to neuroma formation and loss of function at the donor site. The goal of this project is to validate
the materials and methods to fabricate pre-clinical polymeric three-dimensional (3D) nerve conduits with an
embedded wireless sensor for continuous monitoring of functional recovery to be used in infants/children. The
3D printed vascularizable nerve conduits mimic the micro-architecture of nerve tissues, are embedded with
wireless sensors for in situ monitoring, and can perform biomimetic functions to augment nerve regeneration
therapies. Currently, there is no clinical solution for monitoring the success of a neural graft therapy after
surgery. Specific Aim 1 will focus on optimizing 3D-bioprinted nerve conduit fabrication and performance using
commercial-grade biomaterials for clinical translation. To fabricate such a conduit in this aim, we will use a
Rapid Projection, Image-guided, Direct-printing (RaPID) platform that can 3D-print the entire nerve conduit in
mere seconds and will match the patient’s specific size and shape. The conduit will have linear micro-channels
along the length for axon growth and side micro-holes for vascularization. Specific Aim 2 will validate generation
of pediatric patient-specific conduits based on volumetric defect. In this aim, we will coordinate the collection of
MRI data among pediatric patients from birth to 18 years of age, both sexes, and with peripheral nerve injuries
involving the head and neck, upper limbs, and lower limbs. Based upon the MRI data collected, personalized
pediatric nerve conduits will be 3D bioprinted to validate the RaPID system and provide evidence for planned
FDA regulatory review. Specific Aim 3 will develop a wirelessly powered and controlled sensor to detect
electrical impulses across a nerve defect. In this aim, we will attach wireless sensors via a polymeric cuff design
to the distal end of an injured mouse sciatic nerve to assess the rate and robustness of nerve fiber growth
across the therapeutic repair site. Developing this implantable sensor will pave the way for integrating
diagnostics with therapeutics for surgical interventions. The final deliverable at the completion of this proposal
will be to have the manufacturing specifications, source material specifications, sizing limits, testing and release
specifications for 3D bioprinted nerve conduits with wireless sensing to support a pre-submission meeting with
FDA followed by a 510(k) filing.
项目摘要
周围神经损伤,由于创伤,肿瘤或其他医疗条件,需要50000 - 200000
手术,并可能导致完全或部分瘫痪。自体移植是目前的“金标准”
但是需要额外的程序来获取移植物,在儿科人群中进行可能具有挑战性,
并且经常导致供体部位的神经瘤形成和功能丧失。这个项目的目标是验证
本发明提供了制造临床前聚合物三维(3D)神经导管的材料和方法,
嵌入式无线传感器,用于连续监测婴儿/儿童的功能恢复。的
3D打印的可血管化神经导管模仿神经组织的微结构,嵌入有
用于原位监测的无线传感器,并且可以执行仿生功能以增强神经再生
治疗目前,没有临床解决方案用于监测神经移植物治疗后的成功。
手术具体目标1将专注于优化3D生物打印神经导管的制造和性能,
用于临床转化的商业级生物材料。为了实现这一目标,我们将使用
快速投影,图像引导,直接打印(RaPID)平台,可以3D打印整个神经导管,
只需几秒钟,并将匹配患者的特定大小和形状。导管将具有线性微通道
沿着长度用于轴突生长和侧面微孔用于血管化。特定目标2将确认生成
儿科患者特定导管的体积缺陷。为此,我们将协调收集
出生至18岁儿童患者(男女均)和周围神经损伤患者的MRI数据
包括头颈部、上肢和下肢。根据收集的MRI数据,
儿科神经导管将进行3D生物打印,以验证RaPID系统,并为计划的
FDA监管审查。Specific Aim 3将开发一种无线供电和控制的传感器,
通过神经缺损的电脉冲在这个目标中,我们将通过聚合物袖口设计连接无线传感器
以评估神经纤维生长的速率和稳健性
穿过治疗修复部位。开发这种植入式传感器将为集成
诊断和治疗用于外科手术干预。本提案完成时的最终交付成果
将具有制造质量标准、源材料质量标准、尺寸限制、测试和放行
具有无线传感功能的3D生物打印神经导管的规格,以支持提交前会议,
FDA随后提交了510(k)文件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOCHEN CHEN其他文献
SHAOCHEN CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOCHEN CHEN', 18)}}的其他基金
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10654014 - 财政年份:2022
- 资助金额:
$ 63.24万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10508956 - 财政年份:2022
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10180921 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10059051 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10414977 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10740924 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10679020 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10524187 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10351191 - 财政年份:2020
- 资助金额:
$ 63.24万 - 项目类别:
Stem Cell-based Human Placenta-on-a-Chip Using 3D Bioprinting
使用 3D 生物打印技术开发基于干细胞的人类胎盘芯片
- 批准号:
10177137 - 财政年份:2019
- 资助金额:
$ 63.24万 - 项目类别:
相似海外基金
REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
- 批准号:
2349771 - 财政年份:2024
- 资助金额:
$ 63.24万 - 项目类别:
Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 63.24万 - 项目类别:
Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
- 批准号:
23H00232 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
- 批准号:
23H01489 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
- 批准号:
2216835 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
- 批准号:
23H01882 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
- 批准号:
EP/X018385/1 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
- 批准号:
10635210 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
- 批准号:
2320636 - 财政年份:2023
- 资助金额:
$ 63.24万 - 项目类别:
Standard Grant














{{item.name}}会员




