The MSK Genomic Data Analysis Center for Tumor Evolution
MSK 肿瘤进化基因组数据分析中心
基本信息
- 批准号:10671087
- 负责人:
- 金额:$ 41.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAllelesAnatomyAreaBiological AssayBiological ProcessBiopsyCancer CenterCell CommunicationCellsClinVarClinicalClonal EvolutionClonal ExpansionComputer softwareCopy Number PolymorphismDNADNA Mutational AnalysisDNA Sequence AlterationDNA sequencingDataData AnalysesData SourcesDiagnosisDiseaseDisease ProgressionEngineeringEpigenetic ProcessEvolutionGene ClusterGene Expression ProfileGenesGenome Data Analysis CenterGenomicsGrowthHeterogeneityHuman CharacteristicsImmuneIndividualInfrastructureInvestigationLaboratoriesLeadLiteratureMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMapsMeasuresMethodsModelingModificationMolecularMonitorMutationNeoplasm MetastasisOncogenicPathogenesisPathway interactionsPatient MonitoringPatientsPharmacotherapyPhenotypePhylogenetic AnalysisPloidiesPopulationPositioning AttributePrevalencePrimary NeoplasmProcessRNARecurrenceRelapseResearch PersonnelResistanceResolutionSample SizeSamplingScientistSeriesSignal PathwaySiteSomatic MutationSpecificityStatistical MethodsStatistical ModelsSurveysThe Cancer Genome AtlasTherapeutic InterventionTimeTreatment FailureTreesVariantVisualizationWorkanalytical methodcBioPortalcancer cellcancer genomecancer genomicscancer typecell free DNAcell killingcell typeclinical developmentclinical sequencingdata visualizationdriver mutationexomefitnessgenetic variantgenome analysisgenome sequencingimprovedinnovationlenslongitudinal analysismultimodalityneoplastic cellnew therapeutic targetnovelpatient populationprecision oncologyprogramsrelapse preventionresistance mutationsingle cell analysissingle-cell RNA sequencingsoftware infrastructuretargeted treatmenttherapy developmenttherapy resistanttime usetooltranscriptometranscriptome sequencingtreatment responsetumortumor growthtumor heterogeneitytumor progressionwhole genome
项目摘要
Abstract
The MSK Genomic Data Analysis Center for Tumor Evolution seeks to implement tools, best practices and
analytical workflows for studying cancer evolution from cancer genome and transcriptome sequencing data.
Over the last 15 years, survey sequencing of patient populations of many cancer types has elucidated novel
driver mutations which are mechanistically responsible for disease pathogenesis. The Cancer Genome Atlas
(TCGA) and individual laboratory efforts have broadened the understanding of biological processes impacted by
somatic mutation and revealed new therapeutic targets that have achieved clinical impact. However, most of this
work has been based on bulk DNA sequencing from primary tumors and single biopsies from patients. It is well
understood that cancer is an evolutionary process during which clonal expansions within patients generates
heterogeneity and phenotypic diversity of cell populations across metastatic sites over time (with or without
therapeutic intervention). Indeed, the same targeted therapies developed based on mutation discoveries often
select for resistant clones, keeping durable cures out of reach. We will develop analytical methods, tools and
software infrastructure to study cancer progression through the lens of evolution, shifting emphasis from analysis
of primary tumors to dynamic analyses over clinical trajectories. We expect our program will advance the ability
to study clinical trajectories of patients in a more comprehensive approach, including temporal, spatial and single
cell analysis to better represent the full clonal repertoires of tumors and to study the determinants of how and
why tumors evolve. We use tools, well established in our laboratories, in three key areas: i) variant interpretation
from metastatic and post-treatment samples for discovery of therapeutic resistance mutations (Aim 1); ii) multi-
sample analysis across anatomic space, and/or time series data from serial biopsy or cell free DNA to track and
model clonal dynamics (Aim 2); iii) single cell approaches for clonal decomposition and clone-specific
phenotyping within patients (Aim 3). Our team is well positioned to carry out our objectives having developed
leading software infrastructures supporting TCGA and clinical sequencing through MSK-IMPACT, development
of clinically approved assays for longitudinal monitoring of patients through cell free DNA sequencing (MSK-
ACCESS) and through study of clonal evolution at bulk and single cell resolution. We will implement and improve
tools to support each of these aims, including Cancer Hotspots, OncoKB, and cBioPortal for Aim 1, PyClone
and fitClone for Aim 2 and CloneAlign and CellAssign for Aim 3, tailoring and customizing software to support
investigations into the dynamic and evolutionary nature of human cancers. These tools comprise a software
infrastructure focused on cancer evolution through variant allele interpretation, multi-sample analysis and single
cell investigation. Our infrastructure will enable researchers to automate evolutionary interpretation of disease
dynamics to better understand the clinical end points of metastatic progression and therapeutic resistance.
摘要
MSK肿瘤进化基因组数据分析中心寻求实施工具,最佳实践和
从癌症基因组和转录组测序数据研究癌症演变的分析工作流程。
在过去的15年中,对许多癌症类型的患者群体的调查测序已经阐明了新的癌症基因。
驱动突变是疾病发病机制的机制。癌症基因组图谱
(TCGA)和个人实验室的努力扩大了对生物过程的理解,
体细胞突变并揭示了已取得临床影响的新治疗靶点。然而,大多数
工作是基于来自原发肿瘤和来自患者的单次活检的批量DNA测序。公
我知道癌症是一个进化过程,在此过程中,患者体内的克隆扩增产生了
随着时间的推移,转移部位的细胞群体的异质性和表型多样性(有或没有
治疗干预)。事实上,基于突变发现开发的相同靶向疗法通常
选择抗性克隆,保持持久的治疗遥不可及。我们将开发分析方法、工具,
通过进化的透镜研究癌症进展的软件基础设施,
对原发性肿瘤的临床轨迹进行动态分析。我们希望我们的项目能提高
以更全面的方法研究患者的临床轨迹,包括时间,空间和单个
细胞分析,以更好地代表肿瘤的完整克隆库,并研究如何和
为什么肿瘤会进化我们在三个关键领域使用在实验室中建立的工具:i)变体解释
从转移性和治疗后样品中发现治疗性耐药突变(目的1); ii)多-
跨解剖空间的样本分析,和/或来自连续活检或无细胞DNA的时间序列数据,以跟踪和
模型克隆动力学(目标2); iii)克隆分解和克隆特异性的单细胞方法
患者内的表型分析(目的3)。我们的团队有能力实现我们的目标,
通过MSK-IMPACT开发支持TCGA和临床测序的领先软件基础设施
临床上批准的通过无细胞DNA测序(MSK-1)对患者进行纵向监测的测定方法
ACCESS),并通过在批量和单细胞分辨率下的克隆进化研究。落实和完善
支持这些目标的工具,包括Cancer Hotspots、OncoKB和cBioPortal for Aim 1、PyClone
和fitClone为目标2和克隆对齐和CellAssign为目标3,剪裁和定制软件,以支持
研究人类癌症的动态和进化性质。这些工具包括一个软件
基础设施通过变异等位基因解释、多样本分析和单样本分析,
手机调查我们的基础设施将使研究人员能够自动化疾病的进化解释
动态,以更好地了解转移进展和治疗耐药性的临床终点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaus Schultz其他文献
Nikolaus Schultz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolaus Schultz', 18)}}的其他基金
The MSK Genomic Data Analysis Center for Tumor Evolution
MSK 肿瘤进化基因组数据分析中心
- 批准号:
10469512 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
The MSK Genomic Data Analysis Center for Tumor Evolution
MSK 肿瘤进化基因组数据分析中心
- 批准号:
10301939 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Understanding Long Tail Driver Mutations in Cancer
了解癌症中的长尾驱动基因突变
- 批准号:
10090571 - 财政年份:2017
- 资助金额:
$ 41.63万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别: