Optimizing Oral Cancer Screening and Precision Management of Potentially Malignant Oral Lesions
优化口腔癌筛查和潜在恶性口腔病变的精准管理
基本信息
- 批准号:10671642
- 负责人:
- 金额:$ 50.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAlcohol consumptionAmericanAppearanceArtificial IntelligenceBenignBiopsyCancer ControlCancer DetectionCancerousCarcinomaCaringCategoriesCellsCharacteristicsClinicalComplexComputer Vision SystemsComputersConsultationsCytologyCytopathologyDataDecision AidDecision MakingDecision ModelingDetectionDevicesDiagnosisDiagnosticDiagnostic EquipmentDiagnostic ImagingDiagnostic testsDiseaseDisease modelDysplasiaEarly DiagnosisEarly identificationEffectivenessGoalsHealthHealth BenefitHigh PrevalenceHistologicImageIncidenceIntraepithelial NeoplasiaLesionLongitudinal cohort studyMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pharynxMethodsMild DysplasiaModelingNational Center for Advancing Translational SciencesNational Institute of Dental and Craniofacial ResearchOpticsOralOral DiagnosisOral ExaminationOral MedicineOral StageOrganOutcomePathway interactionsPatientsPerformancePersonsPopulationPrecision therapeuticsProceduresQuality of lifeRiskRisk AssessmentRisk FactorsRoleScienceScreening for Oral CancerSpecialistStructureTactileTestingTissuesTobacco useTranslatingTranslationsTriageUnited States National Institutes of HealthVisualVisualizationWorkaspiratecancer preventionclinical applicationclinical careclinical decision-makingclinical riskclinical translationcostcost effectivecost effectivenesscurative treatmentsdiagnostic screeningdiagnostic strategydisorder riskeconomic evaluationeconomic outcomehigh riskimprovedimproved outcomelongitudinal datasetmalignant mouth neoplasmmodels and simulationmortality riskmouth squamous cell carcinomanew technologyoral careoral diagnosticsoral lesionoral premalignancyovertreatmentpersonalized diagnosticspersonalized managementpoint of carepremalignantprematurepreventrisk stratificationscalpelscreeningscreening guidelinestooltranslational diagnosticsusability
项目摘要
Project Summary
Despite treatment advances over the past several decades, cancer-specific survival for oral cancers
remains bleak, mostly due to the majority of cases being diagnosed at late stages. Early-stage detection of
cancers (most often oral squamous cell carcinoma (OSCC)) would enable less disfiguring, less costly therapy
with curative intent. However, limitations of traditional visual-tactile examination for oral cancerous and pre-
cancerous lesions have hindered cancer detection and support for screening. Visual inspection for separation
of benign from precancerous or cancerous lesions is inaccurate, and therefore standard practice entails
referral and scalpel biopsy of most potentially malignant oral lesions. Furthermore, approximately 20% of
potentially malignant oral lesions contain some degree of epithelial dysplasia or carcinoma, and therefore early
identification could allow curative treatment as the majority of OSCC typically starts as dysplasia, and the
degree of dysplasia is correlated with the rate of malignant transformation. Detractors of oral screening cite the
high prevalence of benign oral lesions and mild dysplasia as circumstances placing patients at risk of harms
from over-testing and over-treatment. Thus, screening efforts could be transformed by adjunctive diagnostic
tests that offer highly accurate cytopathologic information at the point of care, such as the NIDCR-supported
Point-of-Care Oral Cytopathology Tool. Computer vision-assisted precision imaging tests have recently shown
strong diagnostic performance for oral lesion characterization, but their potential pitfalls and promises must be
thoroughly investigated before clinical application. Similarly, machine learning could bolster optical tests for
visualizing potentially malignant lesions. If successful, these artificial intelligence devices could aid decision-
making, preventing unnecessary scalpel biopsies for low-risk lesions and enabling risk-stratified surveillance or
treatment. Our team of experts in computer disease simulation modeling, machine learning, oral medicine, and
economic evaluation will transform a disease simulation model to provide analysis at the point of care, and
evaluate the different potential uses of precision imaging diagnostics for translation to clinical care. We will
expand our existing disease model of potentially malignant oral lesions to represent lesion characteristics and
clinical risk categories (e.g. based on tobacco and alcohol use) through incorporation of large longitudinal
datasets (Aim 1), in order to evaluate whether artificial intelligence-assisted cytologic testing can improve the
effectiveness and cost-effectiveness of screening for low, moderate, or high risk categories (Aim 2). Finally, we
will evaluate whether adjuncts for lesion visualization render favorable effectiveness and cost effectiveness of
screening across risk categories, with or without artificial intelligence support, and develop a user interface for
the model (Aim 3). This work will produce an analytic engine to guide clinical translation of artificial intelligence-
aided diagnostics for oral lesion detection and characterization, to overcome insufficient screening reliability.
项目概要
尽管过去几十年来治疗取得了进步,但口腔癌的癌症特异性生存率
情况依然黯淡,主要是因为大多数病例已处于晚期诊断。早期检测
癌症(最常见的是口腔鳞状细胞癌(OSCC))可以减少毁容,降低治疗成本
具有治疗目的。然而,传统的视觉触觉检查对于口腔癌和口腔癌前病变的局限性
癌性病变阻碍了癌症检测和筛查支持。目视检查分离情况
将良性病变与癌前病变或癌性病变区分开来是不准确的,因此标准做法需要
大多数潜在恶性口腔病变的转诊和手术刀活检。此外,大约 20%
潜在恶性口腔病变包含一定程度的上皮发育不良或癌,因此早期
鉴定可以进行治愈性治疗,因为大多数 OSCC 通常始于不典型增生,并且
不典型增生的程度与恶变率相关。口腔筛查的批评者引用了
良性口腔病变和轻度发育不良的患病率很高,使患者面临受到伤害的风险
来自过度测试和过度治疗。因此,筛查工作可以通过辅助诊断来改变
在护理点提供高度准确的细胞病理学信息的测试,例如 NIDCR 支持的
护理点口腔细胞病理学工具。计算机视觉辅助精密成像测试最近表明
对于口腔病变特征具有很强的诊断性能,但它们的潜在陷阱和前景必须是
临床应用前要进行彻底的研究。同样,机器学习可以支持光学测试
可视化潜在的恶性病变。如果成功,这些人工智能设备可以帮助决策
进行、防止对低风险病变进行不必要的手术刀活检,并实现风险分层监测或
治疗。我们的专家团队由计算机疾病模拟建模、机器学习、口腔医学和
经济评估将转变疾病模拟模型以提供护理点分析,以及
评估精密成像诊断转化为临床护理的不同潜在用途。我们将
扩展我们现有的潜在恶性口腔病变的疾病模型以代表病变特征和
通过纳入大型纵向数据来划分临床风险类别(例如,基于烟草和酒精的使用)
数据集(目标 1),以评估人工智能辅助细胞学检测是否可以改善
低、中或高风险类别筛查的有效性和成本效益(目标 2)。最后,我们
将评估病变可视化的辅助手段是否能带来良好的效果和成本效益
在有或没有人工智能支持的情况下跨风险类别进行筛查,并开发一个用户界面
模型(目标 3)。这项工作将产生一个分析引擎来指导人工智能的临床转化——
口腔病变检测和表征的辅助诊断,以克服筛查可靠性不足的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stella Kang其他文献
Stella Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stella Kang', 18)}}的其他基金
Tailored Screening for Urinary System Cancers in Patients with Chronic Kidney Disease
慢性肾病患者泌尿系统癌症的定制筛查
- 批准号:
10654677 - 财政年份:2022
- 资助金额:
$ 50.43万 - 项目类别:
Tailored Screening for Urinary System Cancers in Patients with Chronic Kidney Disease
慢性肾病患者泌尿系统癌症的定制筛查
- 批准号:
10444655 - 财政年份:2022
- 资助金额:
$ 50.43万 - 项目类别:
Optimizing Oral Cancer Screening and Precision Management of Potentially Malignant Oral Lesions
优化口腔癌筛查和潜在恶性口腔病变的精准管理
- 批准号:
10455592 - 财政年份:2021
- 资助金额:
$ 50.43万 - 项目类别:
Optimizing Oral Cancer Screening and Precision Management of Potentially Malignant Oral Lesions
优化口腔癌筛查和潜在恶性口腔病变的精准管理
- 批准号:
10298437 - 财政年份:2021
- 资助金额:
$ 50.43万 - 项目类别:
Patient-Centered Decision-Making for Management of Small Renal Tumors - Supplement
以患者为中心的小肾肿瘤治疗决策 - 补充
- 批准号:
10393960 - 财政年份:2021
- 资助金额:
$ 50.43万 - 项目类别:
Patient-Centered Decision-Making for Management of Small Renal Tumors
以患者为中心的小肾肿瘤治疗决策
- 批准号:
9321209 - 财政年份:2016
- 资助金额:
$ 50.43万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 50.43万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 50.43万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 50.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




