Rapid sugar sensing from gut to brain
从肠道到大脑的快速糖传感
基本信息
- 批准号:10676399
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAgonistAmericanAntidiabetic DrugsBariatricsBindingBrainCOVID-19Cardiovascular DiseasesCellsChronic DiseaseClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesConsumptionDataDesire for foodDiabetes MellitusDietDoctor of MedicineDoctor of PhilosophyElectrophysiology (science)Energy MetabolismEpithelial CellsFamilyFoodGlucose TransporterGlutamatesGoalsHealthHospitalizationHumanIn VitroIntakeInterventionIntestinesKnock-outLeadershipLifeLigandsMeasuresMediatingMembrane ProteinsMentorsMentorshipMetabolismMusNational Institute of Diabetes and Digestive and Kidney DiseasesNeurobiologyNeuronsNitrogenObesityOrganoidsOxygenPerfusionPharmacologic SubstancePhysiciansPositioning AttributeRecommendationRoleScientistSensorySignal TransductionSodiumStructureTestingTherapeuticTimeTrainingTranscriptVagus nerve structureabsorptioncareercomorbiditydetection of nutrientglucose transporthormonal signalsin vivoinhibitorintestinal epitheliummind controlneurogeneticsnovelpharmacologicreceptorresponsesensorskillssugar
项目摘要
PROJECT SUMMARY/ABSTRACT
The average American adult consumes over 40 pounds of sugar per year. While sugar intake is necessary for
energy metabolism and survival, this overconsumption has led to rampant obesity and diabetes. Therefore, it is
critical to determine the gut-brain circuit that drives sugar overconsumption. Recently, specialized sensory cells
in the intestinal epithelium, known as neuropod cells, were found to sense intestinal sugars and drive sugar
appetite. Neuropod cells sense sugars using sodium-glucose transporters (SGLTs). Most studies on intestinal
sugar sensing have focused on glucose transport ability itself, but little is known about sensing in the absence
of transport. Here, we will use an anti-diabetic molecule specific to human SGLTs to probe whether it is
glucose transport or sensing that is necessary to activate the neuropod cell sugar sensing circuit. My
hypothesis is that sugar sensing, in the absence of transport, will activate neuropod cells, causing glutamate
release and vagus nerve activity. Therefore, I am pursuing the following aims: 1) to determine whether specific
SGLT activation leads to neuropod cell glutamate release and 2) to determine whether an anti-diabetic
molecule leads to rapid, neuropod cell dependent vagal activity. My approach includes neurogenetic
manipulations of intestinal organoids and in vitro and in vivo electrophysiology. These studies may uncover a
pharmacological target for modulating rapid gut-brain control of food choice without perturbing life-sustaining
sugar absorption. My co-sponsors, Drs. Diego Bohórquez, Ph.D. and David D’Alessio, M.D., are experts in
neuropod cell nutrient sensing and hormone signaling in obesity, respectively. Consistent with their long-
established track record of mentorship, the proposed studies and training plan will provide me with the rigorous
scientific training and leadership skills necessary for a career as a physician-scientist based on gut-brain circuit
manipulation as a bariatric intervention.
项目摘要/摘要
美国成年人平均每年消耗超过40磅的糖。而糖的摄入剂是必需的
能量代谢和生存,这种过度消费导致肥胖和糖尿病猖ramp。因此,是
确定驱动糖过度消费的肠道回路至关重要。最近,专门的感觉细胞
在肠上皮中,被称为神经足类细胞,可以感觉到肠道糖并驱动糖
食欲。神经足类细胞使用钠 - 葡萄糖转运蛋白(SGLTS)感测糖。大多数关于肠道的研究
糖感应集中于葡萄糖传输能力本身,但在不存在的情况下,灵敏度知之甚少
运输。在这里,我们将使用特定于人类sglts的抗糖尿病分子来探测它是否是
激活神经足类细胞糖感应电路所必需的葡萄糖传输或灵敏度。我的
假设是,在没有转运的情况下,糖传感会激活神经脚架细胞,从而导致谷氨酸
释放和迷走神经活动。因此,我正在追求以下目的:1)确定是否具体
SGLT激活会导致神经胶体细胞谷氨酸释放和2)确定抗糖尿病是否是否
分子导致快速的神经脚类细胞依赖性迷走神经活性。我的方法包括神经源
操纵肠癌,体外和体内电生理学。这些研究可能会发现
用于调节食物选择的快速肠道控制的药理目标,而不会扰动生命
糖滥用。我的共同赞助商,博士。 DiegoBohórquez博士医学博士David D’Alessio是专家
肥胖症中的神经足类细胞营养感和马烯信号传导。与他们的长期
拟议的研究和培训计划的既定往绩记录将为我提供严格的
基于肠道赛道的身体科学家所必需的科学培训和领导技能
操纵作为减肥干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Jean Alway其他文献
Emily Jean Alway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Adrb2激动剂在改善呼吸机相关性膈肌功能障碍中的作用与机制研究
- 批准号:82372196
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Evaluating the efficacy of a novel NASH therapeutic
评估新型 NASH 疗法的疗效
- 批准号:
10698971 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Exercise Mimetics for Dementia and Alzheimer's Disease
治疗痴呆和阿尔茨海默病的模拟运动
- 批准号:
10586188 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
The influence of aerobic exercise on consolidation of fear extinction learning in PTSD
有氧运动对PTSD患者恐惧消退学习巩固的影响
- 批准号:
10840496 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Understanding the Association between Sublingual Buprenorphine and Oral Health Outcomes
了解舌下含服丁丙诺啡与口腔健康结果之间的关联
- 批准号:
10765299 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: