Investigating the role of mechanotransduction machinery and the rootlet in modulating stereocilia motion.
研究机械传导机制和细根在调节静纤毛运动中的作用。
基本信息
- 批准号:10676417
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectAuditoryBiochemicalBrainBuffersCalciumCell physiologyCellsCochleaCollaborationsCommunicationCoupledCouplingDataDependenceDetectionDevelopmentDiameterEducational workshopElasticityElementsEnvironmentFunctional disorderGenesGoalsHairHair CellsHearingHumanImageIndividualInternationalLaboratoriesLeftLinkLiquid substanceMeasuresMechanicsMediatingMethodsModelingMolecularMonitorMotionMovementNoise-Induced Hearing LossOrganOrganellesPathway interactionsProbabilityProductivityPropertyProteinsProxyQuality of lifeRegulationResearchResearch PersonnelResearch TrainingResolutionResourcesRoleScientistSensory HairShapesSideSignal TransductionSiteSpeedStimulusSumTechnical ExpertiseTechniquesTechnologyTestingTherapeutic InterventionTimeTrainingTubocurarineUniversitiesWorkage relatedbiophysical propertiescareercareer developmentcellular transductiondeafnessdesignexperienceexperimental studyextracellularhearing impairmentmechanical propertiesmechanotransductionmeterpatch clamppreventive interventionresponsesoundsuccesssymposiumtoolvoltage clamp
项目摘要
Project Summary/Abstract
Auditory sensory hair cells transduce sound using a bundle of actin-filled cellular protrusions called stereocilia
which are coupled together by tip links, top connectors and side connectors, and fluid forces. Activity of
mechanoelectrical transduction (MET) channels, located near the tops of the shorter stereocilia, are modulated
by the differential motion of stereocilia as conveyed via the tip link connection. Thus, stereocilia motion regulates
the open probability of MET channels which drives communication of sound to the brain. The fundamental goal
of this proposal is to characterize the mechanical underpinnings of the stereociliary connections that shape the
force applied to MET channels. Many human deafness genes affect the molecular components of the MET
machinery, including tip links and MET channels. The biophysical characteristics of components coupling the
bundle dictate how they filter stimuli. Understanding the mechanical properties of coupling in mammalian hair
bundles is essential to our understanding of hair cell function and hearing (Aim 1, 2). We hypothesize that
channel open probability reflects tension in the tip link and that changes in hair bundle stiffness associated with
channel gating will be present in mammalian cochlear hair bundles. To test these hypotheses, hair bundle
mechanics will be investigated using newly developed technology that uses a ~1 µm diameter stiff probe to push
on 1-3 stereocilia which will displace the remaining stereocilia through the connections coupling them. High-
speed motion tracking will be used to reveal the rapid (<100 μs) movements of individual stereocilia in rows 1
and 2, allowing for characterization of stereociliary connectivity while whole cell voltage clamp provides the MET
current response. The MET machinery and its regulation by calcium will be examined by raising or lowering open
probability by changing intracellular free calcium levels, disrupting the tip link connections (Aim 1), and with
channel blockade (Aim 2). The experiments in this proposal, their analyses, and the dissemination of their
findings will serve as strong technical training for the applicant, providing the tools necessary to become an
internationally competitive, rigorous, and independent research scientist. Professional development will be
provided by experiences within the laboratory setting, the department, as well as by the environment and
resources provided by Stanford University. Technical and career development are provided through excellent
workshops, seminars, conferences, and collaborations with outstanding researchers inside and outside Stanford.
The research training plan outlined in this proposal is designed to create a pathway to independence where both
the technical expertise and foundational data will provide the cornerstone for independent work.
项目概要/摘要
听觉感觉毛细胞利用一束充满肌动蛋白的细胞突起(称为静纤毛)来传递声音
它们通过尖端连杆、顶部连接器和侧面连接器以及流体力耦合在一起。活动
位于较短静纤毛顶部附近的机电传导 (MET) 通道受到调节
通过通过尖端连杆连接传递的静纤毛的差速运动。因此,静纤毛运动调节
驱动声音与大脑通讯的 MET 通道的开放概率。根本目标
该提案的目的是描述塑造立体纤毛连接的机械基础
施加到 MET 通道的力。许多人类耳聋基因影响 MET 的分子成分
机械,包括尖端链接和 MET 通道。耦合成分的生物物理特性
捆绑决定了他们如何过滤刺激。了解哺乳动物毛发耦合的机械特性
束对于我们了解毛细胞功能和听力至关重要(目标 1、2)。我们假设
通道打开概率反映了尖端连接的张力以及与相关的发束刚度的变化
通道门控将存在于哺乳动物耳蜗毛束中。为了检验这些假设,发束
将使用新开发的技术来研究力学,该技术使用直径约 1 µm 的刚性探针来推动
位于 1-3 个静纤毛上,这将通过耦合它们的连接取代剩余的静纤毛。高的-
速度运动跟踪将用于揭示第 1 行中单个静纤毛的快速(<100 μs)运动
2,允许表征立体纤毛连接性,同时全细胞电压钳提供 MET
当前的响应。 MET 机械及其对钙的调节将通过升高或降低开放来检查
通过改变细胞内游离钙水平、破坏尖端连接(目标 1)以及
通道封锁(目标 2)。本提案中的实验、分析及其传播
研究结果将为申请人提供强有力的技术培训,为成为一名技术人员提供必要的工具。
有国际竞争力、严谨、独立的研究科学家。专业发展将
由实验室环境、部门以及环境和环境中的经验提供
斯坦福大学提供的资源。通过优秀的技术和职业发展
研讨会、研讨会、会议以及与斯坦福大学内外杰出研究人员的合作。
本提案中概述的研究培训计划旨在创建一条通向独立的途径,其中双方
技术专长和基础数据将为独立工作提供基石。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamis McGrath其他文献
Jamis McGrath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




