Robust mapping of chromatin loops from sparse or single cell Hi-C data with DeepLoop
使用 DeepLoop 从稀疏或单细胞 Hi-C 数据中稳健地绘制染色质环
基本信息
- 批准号:10676223
- 负责人:
- 金额:$ 55.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-03 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectBenchmarkingBrainCell NucleusCellsChromatinChromatin Interaction Analysis by Paired-End Tag SequencingChromatin LoopChromosome MappingCommunitiesComplexCopy Number PolymorphismDNA FoldingDNA mappingDataData AnalysesData SetDigestionDiseaseError SourcesFinancial HardshipFutureGene ExpressionGenesGenetsGenomeGenome MappingsGoalsGrantHi-CHiccupHomologous GeneHumanIceIslets of LangerhansLibrariesMapsMethodsNamesNoisePaperPerformancePhasePopulationProtocols documentationPublishingRegulator GenesReportingResearchResolutionResourcesSamplingScientistSignal TransductionStructureSystematic BiasTechniquesTechnologyTissuesVariantWorkcomputerized toolscostdata resourcedeep learningdeep sequencinggenome analysisgenome-wideimprovedinnovationmammalian genomemethod developmentperformance testspromotersuccesstool
项目摘要
Project Abstract
Mapping the gene-regulatory chromatin interactions within topologically associated domains (sub-
TAD) remains a major challenge in 3D genome research. It is generally believed that multibillion-read
sequencing depth are required for Hi-C analysis at kilobase-resolution due to the complex bias structure
and severe data sparsity. However, we recently discovered that this is problem can be largely solved
computationally without the need for ultradeep-sequencing. We developed a new pipeline named
DeepLoop that can robustly identify high-resolution chromatin interactions from low-depth Hi-C data. The
conceptual innovation of DeepLoop is to handle systematic biases and random noises separately: we
used HiCorr to improve the rigor of bias correction, and then applied deep-learning techniques for noise
reduction and loop signal enhancement. Preliminary results showed that DeepLoop significantly improves
the sensitivity, robustness, and quantitation of Hi-C loop analyses, and can be used to reanalyze most
published low-depth Hi-C datasets. Remarkably, DeepLoop can identify chromatin loops with Hi-C data
from a few dozen single cells. These successes motivate us to further optimize, benchmark, simplify and
upgrade DeepLoop into a versatile tool for the 3D genome field. Aim 1 will optimize and benchmark
DeepLoop performance, improve its compatibility with a variety of different Hi-C protocols, and expand
its utility to ultra-resolution analysis. Aim 2 will develop new DeepLoop-based pipelines to enable robust
mapping of dynamic chromatin loops at high-resolution, including the identification of homolog-specific
loops and loops affected by structure variants. Aim 3 will develop a full-package solution for high-
resolution loop analysis of complex tissues with single cell Hi-C, a significant amount of data will be
generated in this project as a resource for the scientific community.
项目摘要
绘制拓扑相关域内基因调控染色质相互作用的图谱(子-
TAD)仍然是 3D 基因组研究的主要挑战。人们普遍认为,阅读量达数十亿次
由于复杂的偏差结构,千碱基分辨率的 Hi-C 分析需要测序深度
以及严重的数据稀疏性。然而,我们最近发现这个问题可以在很大程度上得到解决
通过计算无需超深测序。我们开发了一个新的管道,名为
DeepLoop 可以从低深度 Hi-C 数据中稳健地识别高分辨率染色质相互作用。这
DeepLoop的概念创新在于分别处理系统偏差和随机噪声:我们
使用 HiCorr 提高偏差校正的严格性,然后应用深度学习技术进行噪声
减少和环路信号增强。初步结果表明DeepLoop显着提高
Hi-C 环分析的灵敏度、稳健性和定量性,可用于重新分析大多数
发布了低深度 Hi-C 数据集。值得注意的是,DeepLoop 可以利用 Hi-C 数据识别染色质环
由几十个单细胞组成。这些成功激励我们进一步优化、基准测试、简化和
将 DeepLoop 升级为 3D 基因组领域的多功能工具。目标 1 将优化和基准测试
DeepLoop性能,提高其与多种不同Hi-C协议的兼容性,并扩展
它在超分辨率分析中的实用性。目标 2 将开发新的基于 DeepLoop 的管道,以实现稳健的
以高分辨率绘制动态染色质环,包括同源特异性的识别
循环和受结构变体影响的循环。 Aim 3将开发一套完整的解决方案,用于高
使用单细胞 Hi-C 对复杂组织进行分辨率循环分析,将获得大量数据
该项目中产生的作为科学界的资源。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fulai Jin其他文献
Fulai Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fulai Jin', 18)}}的其他基金
Simultaneous mapping of somatic mosaicism and kb-resolution 3D genome in single cells.
单细胞中体细胞嵌合体和 kb 分辨率 3D 基因组的同时作图。
- 批准号:
10660575 - 财政年份:2023
- 资助金额:
$ 55.96万 - 项目类别:
STAG2 mutations and 3D genome organization in glioblastoma multiforme
多形性胶质母细胞瘤中的 STAG2 突变和 3D 基因组组织
- 批准号:
10681289 - 财政年份:2022
- 资助金额:
$ 55.96万 - 项目类别:
STAG2 mutations and 3D genome organization in glioblastoma multiforme
多形性胶质母细胞瘤中的 STAG2 突变和 3D 基因组组织
- 批准号:
10525627 - 财政年份:2022
- 资助金额:
$ 55.96万 - 项目类别:
Understanding the variation of induced β-cell differentiation.
了解诱导β细胞分化的变化。
- 批准号:
10646289 - 财政年份:2022
- 资助金额:
$ 55.96万 - 项目类别:
Developing a one-tube circularized ligation product sequencing (CLP-seq) method for the mapping of 3D genome architecture in small cell populations or single cells.
开发一种单管环化连接产物测序 (CLP-seq) 方法,用于绘制小细胞群或单细胞中的 3D 基因组架构。
- 批准号:
9364054 - 财政年份:2017
- 资助金额:
$ 55.96万 - 项目类别:
Developing a one-tube circularized ligation product sequencing (CLP-seq) method for the mapping of 3D genome architecture in small cell populations or single cells.
开发一种单管环化连接产物测序 (CLP-seq) 方法,用于绘制小细胞群或单细胞中的 3D 基因组架构。
- 批准号:
10170405 - 财政年份:2017
- 资助金额:
$ 55.96万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Research Grant














{{item.name}}会员




