Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
基本信息
- 批准号:10684375
- 负责人:
- 金额:$ 28.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAdoptionAlgorithmsAnatomyAppearanceBeautyBehaviorBiological ModelsClinicClinicalComplexDataDatabasesDependenceDerivation procedureDevelopmentDiagnosticDictionaryDigital LibrariesDimensionsDoseEnsureEvaluationGenesImageImage AnalysisImaging TechniquesLeadLesionLibrariesLungLung CAT ScanLung noduleMachine LearningMeasuresMedical ImagingMethodsModelingNoduleNoiseNon-linear ModelsOutcomeOutputPatientsPerformancePlayPredictive AnalyticsPropertyProtocols documentationRadiation Dose UnitResearchRoleSamplingScanningSchemeShapesSignal TransductionSourceStatistical ModelsSystemTechniquesTechnologyTextureTrainingTranscendWorkX-Ray Computed Tomographybaseclinical applicationclinical translationclinically relevantdata-driven modeldeep learningdeep learning algorithmdeep neural networkdesignexhaustionflexibilityimaging systemimprovedinsightinterestlow dose computed tomographylung cancer screeninglung lesionmachine learning methodneural networknovelpredicting responsepublic databasequantitative imagingradiomicsreconstructionresponsescreeningshape analysissimulationsuccesstargeted imaging
项目摘要
1
PROJECT SUMMARY / ABSTRACT
2 Nonlinear algorithms such as model-based reconstruction (MBR) and deep learning (DL) reconstruction have
3 sparked tremendous research interest in recent years. Compared to traditional linear approaches, the nonline-
4 arity of these algorithm transcends traditional signal-to-noise requirement and offer flexibility to draw information
5 from a variety of sources (e.g., statistical model, prior image, dictionary, training data). MBR has enabled numer-
6 ous advancements including low-dose CT and advanced scanning protocols. Deep learning algorithms are rap-
7 idly emerging and have demonstrated superior dose vs. image quality tradeoffs in research settings. However,
8 widespread clinical adoption of nonlinear algorithms has been impeded by the lack of a lack of systematic, quan-
9 titative methods for performance analysis. Nonlinear methods come with numerous dependencies on the imag-
10 ing techniques, the imaging target, and the prior information, and the data itself. The relationship between these
11 dependencies and image quality is often opaque. Furthermore, improper selection of algorithmic parameters can
12 lead to erroneous features (e.g., smaller lesions, texture) in the reconstruction. Therefore, methods to quantify
13 and predict performance permit efficient and quantifiable performance evaluation to provide the robust control
14 and understanding of imaging output necessary for reliable clinical application and regulatory oversight.
15 We propose to establish a robust, predictive framework for performance assessment and optimization that can
16 be generalized to any reconstruction method. We quantify performance in turns of the perturbation response and
17 covariance as a function of imaging techniques, system configurations, patient anatomy, and, importantly, the
18 perturbation itself. The perturbation response quantifies the appearance (e.g., biases, blurs, distortions), and,
19 together with the covariance, allows the computation of more complex metrics such as task-based performance
20 and radiomic measures including size, shape, and texture information. We illustrate utility of the approach in lung
21 imaging with the following specific aims: Aim 1: Develop a lesion library and generate perturbations encom-
22 passing clinically relevant features. We will extract lesions from public databases and develop methods lesion
23 emulation in for realistic CT simulation and physical data via 3D printing technology. Aim 2: Develop a gener-
24 alized prediction framework for perturbation response and covariance. Using analytical and neural network
25 modeling, we will establish a framework that predicts perturbation response and covariance across imaging
26 scenarios for classes of algorithms with increasing data-dependence including MBR with a Huber penalty, MBR
27 with dictionary regularization, and a deep learning reconstructor. Aim 3: Develop assessment and optimiza-
28 tion strategies to drive robust, low dose lung screening CT methods. We will optimize and adapt nonlinear
29 algorithms and protocols for lung cancer screening to achieve faithful representations of clinical features. This
30 work has the potential to drive much-needed quantitative assessment standards that directly relate image quality
31 to diagnostic performance and optimal strategies for robust, reliable clinical deployment of nonlinear algorithms.
32
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianan Grace Gang其他文献
Jianan Grace Gang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianan Grace Gang', 18)}}的其他基金
Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
- 批准号:
10392088 - 财政年份:2022
- 资助金额:
$ 28.59万 - 项目类别:
Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
- 批准号:
10670050 - 财政年份:2022
- 资助金额:
$ 28.59万 - 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:
10570160 - 财政年份:2022
- 资助金额:
$ 28.59万 - 项目类别:
Patient-specific, high-sensitivity spectral CT for assessment of pancreatic cancer
用于评估胰腺癌的患者特异性高灵敏度能谱 CT
- 批准号:
10491791 - 财政年份:2021
- 资助金额:
$ 28.59万 - 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:
10321949 - 财政年份:2021
- 资助金额:
$ 28.59万 - 项目类别:
Patient-specific, high-sensitivity spectral CT for assessment of pancreatic cancer
用于评估胰腺癌的患者特异性高灵敏度能谱 CT
- 批准号:
10296757 - 财政年份:2021
- 资助金额:
$ 28.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Research Grant