Predicting Metastatic Progression of High Risk Localized Prostate Cancer

预测高风险局限性前列腺癌的转移进展

基本信息

项目摘要

ABSTRACT. Prostate cancer (CaP) is the most commonly diagnosed malignancy other than non-melanoma skin cancer amongst Veterans. Approximately 7% of US CaP cases are diagnosed and treated in the Veteran population. High risk (HR), localized CaP represents 20-25% of the approximately 250,000 new cases of CaP expected in the US in 2022. The outcomes of HR CaP are variable, with some patients remaining in remission and others suffering from metastatic progression and death. Our ability to discriminate between patients who will fare well following curative-intent treatment versus those destined for lethal metastatic progression remains poor. Our overall objective is to apply artificial intelligence (AI) algorithms to generate novel predictors of metastasis-free survival (MFS), the only validated surrogate for overall survival in localized CaP, from a large repository of digital pathology and radiographic images. We will then combine these AI-derived biomarkers with clinical-pathologic and social determinants of health (SDoH) variables collected from Veterans with HR CaP to develop and test multivariable prognostic models that improve our ability to predict MFS. AI, including computer vision and machine learning approaches, allows extraction of image patterns for sub- visual based characterization of CaP. Routine diagnostic prostate needle biopsy pathology slides that have been digitized as well as digital radiographic images (e.g. MRI) can be leveraged for machine learning derived from either (1) hand-crafted features (guided by existing domain knowledge) which are then used as the inputs to develop the machine-learning model based on the selected features, or (2) the raw data itself, which are used as inputs to develop the model through convolutional neural networks or other methods in an unsupervised manner. The former leverages existing domain knowledge and may require less input data, whereas the latter is not limited by prior knowledge, but requires more training data. We hypothesize that machine learning models based on multimodal data derived from MRI and digital pathology can be combined with clinic-pathologic and SDoH data to generate “super classifiers” that more accurately predict outcome without the need for costly tissue destructive methods. We propose to establish a collection of digital pathology and prostate MRI images along with clinic-pathologic and SDoH data from >5,000 Veterans with HR CaP who have been treated with curative intent and a minimum of 5 years of follow-up using our existing approved biorepository protocol. Subsequently, we will determine the most robust AI algorithm for each data source, and then test combinations of algorithms to generate a “superclassifier” that integrates AI-derived predictive models with standard clinico-pathologic and SDoH variables to predict MFS. Improved prognostication could illuminate strategies for treatment intensification or de- intensification that can be formally tested in future clinical trials. The substantial infrastructure and databases generated by this proposal as part of our repository will be accessible by intramural VA and extramural investigators for future approved studies.
摘要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Isla Pearl Garraway其他文献

Isla Pearl Garraway的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Isla Pearl Garraway', 18)}}的其他基金

B ELEMENT IN TATA LESS PROMOTERS
TATA 较少启动子中的 B 元素
  • 批准号:
    2591556
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
B ELEMENT IN TATA LESS PROMOTERS
TATA 较少启动子中的 B 元素
  • 批准号:
    2026767
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
B ELEMENT IN TATA LESS PROMOTERS
TATA 较少启动子中的 B 元素
  • 批准号:
    2208515
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
B ELEMENT IN TATA LESS PROMOTERS
TATA 较少启动子中的 B 元素
  • 批准号:
    2208514
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
CHARACTERIZATION OF THE B ELEMENT IN TATA-LESS PROMOTERS
无 TATA 启动子中 B 元素的特征
  • 批准号:
    2208513
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了