Advancing Digital Pathology through Novel Machine Learning Methodologies

通过新颖的机器学习方法推进数字病理学

基本信息

  • 批准号:
    10684661
  • 负责人:
  • 金额:
    $ 62.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Pathology is focused on providing medical diagnoses and prognoses based on laboratory methods to guide patient treatment and management. Microscopy is fundamental for pathologists to examine tissues and cells. Despite numerous advancements, there have not been many changes in the last century in terms of how microscopy images are used in pathology. The current approach in anatomic pathology lacks standardization and relies on the cognitive burden imposed on pathologists to manually evaluate millions of cells across hundreds of slides in a typical workday. Deep learning-based methods have recently shown encouraging results for analyzing microscopy images. However, they rely on standard computer vision architectures and pipelines, which are limited due to the required time and cost of slide digitization and the computational constraints of analyzing huge high-resolution images. Furthermore, developing accurate deep learning models requires having access to large databases of labeled microscopy images, which is challenging. In this application, new methodologies are proposed to take advantage of the unique characteristics of histopathology datasets and the range of features in histology microscopy images to address these limitations. This project presents a novel approach based on generative adversarial networks for difficulty translation to generate augmented data with realistic, rare, and hard-to-classify histopathological patterns. This approach will mitigate data imbalances in annotated histology datasets and improve the performance of deep learning models for histological classification, particularly for uncommon and difficult-to-classify cases. Furthermore, a novel curriculum learning approach for histology image classification will be developed based on the range of classification difficulty among histopathological patterns and multi-annotator labeled datasets. This approach trains on progressively harder- to-classify images, as determined by annotator agreement, and significantly improves the performance of the resulting deep learning models without requiring additional data or computational resources. In addition, a self- supervised knowledge distillation method will be developed to enhance the efficiency of histology image classification. As large, labeled datasets are scarce, this method uses a self-supervised approach to distill feature extraction capabilities at a high resolution into a student model operating at a lower resolution by leveraging unlabeled datasets. The resulting distilled student models can achieve high classification accuracy on low- resolution histology images while saving a significant amount of time and resources on digitization efforts and required computational resources. The proposed methods in this application remove current bottlenecks in deep learning applications for digital pathology. Therefore, the results from this project could have a major impact on new opportunities that use deep learning technology in clinical workflows and integrate histopathological information with other clinical and molecular data to improve patients' diagnoses, prognoses, and treatments.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saeed Hassanpour其他文献

Saeed Hassanpour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saeed Hassanpour', 18)}}的其他基金

Advancing Digital Pathology through Novel Machine Learning Methodologies
通过新颖的机器学习方法推进数字病理学
  • 批准号:
    10458237
  • 财政年份:
    2022
  • 资助金额:
    $ 62.66万
  • 项目类别:
Improving Colorectal Cancer Screening and Risk Assessment through Deep Learning on Medical Images and Records
通过医学图像和记录的深度学习改进结直肠癌筛查和风险评估
  • 批准号:
    10316231
  • 财政年份:
    2019
  • 资助金额:
    $ 62.66万
  • 项目类别:
Clinicopathologic and Genetic Profiling through Machine Learning and Natural Language Processing for Precision Lung Cancer Management
通过机器学习和自然语言处理进行临床病理学和基因分析,实现肺癌精准管理
  • 批准号:
    10023259
  • 财政年份:
    2019
  • 资助金额:
    $ 62.66万
  • 项目类别:
Clinicopathologic and Genetic Profiling through Machine Learning and Natural Language Processing for Precision Lung Cancer Management
通过机器学习和自然语言处理进行临床病理学和基因分析,实现肺癌精准管理
  • 批准号:
    10475120
  • 财政年份:
    2019
  • 资助金额:
    $ 62.66万
  • 项目类别:
Clinicopathologic and Genetic Profiling through Machine Learning and Natural Language Processing for Precision Lung Cancer Management
通过机器学习和自然语言处理进行临床病理学和基因分析,实现肺癌精准管理
  • 批准号:
    10250521
  • 财政年份:
    2019
  • 资助金额:
    $ 62.66万
  • 项目类别:

相似海外基金

A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
  • 批准号:
    22KJ0334
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
  • 批准号:
    23K18762
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
  • 批准号:
    900240
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
  • 批准号:
    23H00770
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
  • 批准号:
    2346114
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
  • 批准号:
    10828588
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
  • 批准号:
    2234506
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了